Suppr超能文献

一种用于检测罕见变异关联研究中趋势相关性的排列方法。

A permutation method for detecting trend correlations in rare variant association studies.

作者信息

Liu Lifeng, Wang Pengfei, Meng Jingbo, Chen Lili, Zhu Wensheng, Ma Weijun

机构信息

School of Mathematical Sciences, Heilongjiang University, Harbin150080, China.

Key Laboratory for Applied Statistics of MOE, School of Mathematics and Statistics, Northeast Normal University, Changchun130024, China.

出版信息

Genet Res (Camb). 2019 Dec 13;101:e13. doi: 10.1017/S0016672319000120.

Abstract

In recent years, there has been an increasing interest in detecting disease-related rare variants in sequencing studies. Numerous studies have shown that common variants can only explain a small proportion of the phenotypic variance for complex diseases. More and more evidence suggests that some of this missing heritability can be explained by rare variants. Considering the importance of rare variants, researchers have proposed a considerable number of methods for identifying the rare variants associated with complex diseases. Extensive research has been carried out on testing the association between rare variants and dichotomous, continuous or ordinal traits. So far, however, there has been little discussion about the case in which both genotypes and phenotypes are ordinal variables. This paper introduces a method based on the γ-statistic, called OV-RV, for examining disease-related rare variants when both genotypes and phenotypes are ordinal. At present, little is known about the asymptotic distribution of the γ-statistic when conducting association analyses for rare variants. One advantage of OV-RV is that it provides a robust estimation of the distribution of the γ-statistic by employing the permutation approach proposed by Fisher. We also perform extensive simulations to investigate the numerical performance of OV-RV under various model settings. The simulation results reveal that OV-RV is valid and efficient; namely, it controls the type I error approximately at the pre-specified significance level and achieves greater power at the same significance level. We also apply OV-RV for rare variant association studies of diastolic blood pressure.

摘要

近年来,在测序研究中检测与疾病相关的罕见变异受到了越来越多的关注。大量研究表明,常见变异只能解释复杂疾病表型变异的一小部分。越来越多的证据表明,部分缺失的遗传力可以由罕见变异来解释。考虑到罕见变异的重要性,研究人员提出了大量用于识别与复杂疾病相关的罕见变异的方法。针对罕见变异与二分、连续或有序性状之间的关联性检测,已经开展了广泛的研究。然而,到目前为止,对于基因型和表型均为有序变量的情况,几乎没有相关讨论。本文介绍了一种基于γ统计量的方法,称为OV-RV,用于在基因型和表型均为有序变量时检测与疾病相关的罕见变异。目前,在对罕见变异进行关联分析时,对于γ统计量的渐近分布了解甚少。OV-RV的一个优点是,它通过采用Fisher提出的置换方法,对γ统计量的分布提供了稳健的估计。我们还进行了广泛的模拟,以研究OV-RV在各种模型设置下的数值性能。模拟结果表明,OV-RV是有效且高效的;也就是说,它将I型错误大致控制在预先指定的显著性水平,并在相同显著性水平下具有更高的检验效能。我们还将OV-RV应用于舒张压的罕见变异关联研究。

相似文献

1
A permutation method for detecting trend correlations in rare variant association studies.
Genet Res (Camb). 2019 Dec 13;101:e13. doi: 10.1017/S0016672319000120.
2
Association studies for next-generation sequencing.
Genome Res. 2011 Jul;21(7):1099-108. doi: 10.1101/gr.115998.110. Epub 2011 Apr 26.
3
A fast and efficient approach for gene-based association studies of ordinal phenotypes.
Stat Appl Genet Mol Biol. 2023 Feb 1;22(1). doi: 10.1515/sagmb-2021-0068. eCollection 2023 Jan 1.
5
Molecular genetic studies of complex phenotypes.
Transl Res. 2012 Feb;159(2):64-79. doi: 10.1016/j.trsl.2011.08.001. Epub 2011 Aug 31.
6
Detecting disease association signals with multiple genetic variants and covariates.
Stat Methods Med Res. 2017 Jun;26(3):1281-1294. doi: 10.1177/0962280215574541. Epub 2015 Mar 2.
7
Rare variant association test with multiple phenotypes.
Genet Epidemiol. 2017 Apr;41(3):198-209. doi: 10.1002/gepi.22021. Epub 2016 Dec 31.
8
Dynamic Scan Procedure for Detecting Rare-Variant Association Regions in Whole-Genome Sequencing Studies.
Am J Hum Genet. 2019 May 2;104(5):802-814. doi: 10.1016/j.ajhg.2019.03.002. Epub 2019 Apr 12.
9
A nonparametric method to test for associations between rare variants and multiple traits.
Genet Res (Camb). 2016;98:e1. doi: 10.1017/s0016672315000269.

引用本文的文献

本文引用的文献

1
Association detection between ordinal trait and rare variants based on adaptive combination of P values.
J Hum Genet. 2018 Jan;63(1):37-45. doi: 10.1038/s10038-017-0354-2. Epub 2017 Nov 7.
2
Joint analysis of multiple blood pressure phenotypes in GAW19 data by using a multivariate rare-variant association test.
BMC Proc. 2016 Oct 18;10(Suppl 7):309-313. doi: 10.1186/s12919-016-0048-3. eCollection 2016.
3
A nonparametric method to test for associations between rare variants and multiple traits.
Genet Res (Camb). 2016;98:e1. doi: 10.1017/s0016672315000269.
4
Kernel Approach for Modeling Interaction Effects in Genetic Association Studies of Complex Quantitative Traits.
Genet Epidemiol. 2015 Jul;39(5):366-75. doi: 10.1002/gepi.21901. Epub 2015 Apr 17.
5
6
Optimal tests for rare variant effects in sequencing association studies.
Biostatistics. 2012 Sep;13(4):762-75. doi: 10.1093/biostatistics/kxs014. Epub 2012 Jun 14.
7
An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people.
Science. 2012 Jul 6;337(6090):100-4. doi: 10.1126/science.1217876. Epub 2012 May 17.
8
Evolution and functional impact of rare coding variation from deep sequencing of human exomes.
Science. 2012 Jul 6;337(6090):64-9. doi: 10.1126/science.1219240. Epub 2012 May 17.
9
Rare and common variants: twenty arguments.
Nat Rev Genet. 2012 Jan 18;13(2):135-45. doi: 10.1038/nrg3118.
10
Rare-variant association testing for sequencing data with the sequence kernel association test.
Am J Hum Genet. 2011 Jul 15;89(1):82-93. doi: 10.1016/j.ajhg.2011.05.029. Epub 2011 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验