IDEA (Institute of Evolution in Africa), University of Alcalá de Henares, Covarrubias 36, 28010, Madrid, Spain.
Sci Rep. 2019 Dec 12;9(1):18933. doi: 10.1038/s41598-019-55439-6.
Accurate identification of bone surface modifications (BSM) is crucial for the taphonomic understanding of archaeological and paleontological sites. Critical interpretations of when humans started eating meat and animal fat or when they started using stone tools, or when they occupied new continents or interacted with predatory guilds impinge on accurate identifications of BSM. Until now, interpretations of Plio-Pleistocene BSM have been contentious because of the high uncertainty in discriminating among taphonomic agents. Recently, the use of machine learning algorithms has yielded high accuracy in the identification of BSM. A branch of machine learning methods based on imaging, computer vision (CV), has opened the door to a more objective and accurate method of BSM identification. The present work has selected two extremely similar types of BSM (cut marks made on fleshed an defleshed bones) to test the immense potential of artificial intelligence methods. This CV approach not only produced the highest accuracy in the classification of these types of BSM until present (95% on complete images of BSM and 88.89% of images of only internal mark features), but it also has enabled a method for determining which inconspicuous microscopic features determine successful BSM discrimination. The potential of this method in other areas of taphonomy and paleobiology is enormous.
准确识别骨面改造(BSM)对于考古学和古生物学遗址的埋藏学理解至关重要。准确识别人类何时开始食用肉类和动物脂肪,何时开始使用石器,以及何时占领新大陆或与掠夺性群体互动,这些都对 BSM 的准确识别提出了挑战。到目前为止,由于在区分埋藏学因素方面存在高度不确定性,对更新世 BSM 的解释一直存在争议。最近,机器学习算法的使用在 BSM 的识别中取得了很高的准确性。基于成像和计算机视觉(CV)的机器学习方法分支为 BSM 的识别开辟了一种更客观、更准确的方法。本研究选择了两种非常相似的 BSM 类型(在带肉和不带肉的骨头上留下的切割痕迹)来测试人工智能方法的巨大潜力。这种 CV 方法不仅在迄今为止对这些类型的 BSM 的分类中产生了最高的准确性(BSM 的完整图像为 95%,仅内部标记特征的图像为 88.89%),而且还确定了决定成功 BSM 区分的哪些不明显微观特征的方法。这种方法在埋藏学和古生物学的其他领域具有巨大的潜力。