Suppr超能文献

深度学习在放射学中的应用:概念概述及磁共振成像技术的研究现状综述。

Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI.

机构信息

Department of Radiology, Duke University, Durham, North Carolina, USA.

Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA.

出版信息

J Magn Reson Imaging. 2019 Apr;49(4):939-954. doi: 10.1002/jmri.26534. Epub 2018 Dec 21.

Abstract

Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep-learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep-learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep-learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:939-954.

摘要

深度学习是人工智能的一个分支,它使用简单的相互连接的网络单元从数据中提取模式,以解决复杂问题。深度学习算法在各种复杂任务中表现出了突破性的性能,特别是与图像相关的任务。它们的表现常常与人类相当,甚至超过人类。由于放射学的医学领域主要依赖于从图像中提取有用的信息,因此深度学习是一个非常自然的应用领域,近年来该领域的研究迅速发展。在本文中,我们讨论了放射学的一般背景和深度学习算法的应用机会。我们还介绍了深度学习的基本概念,包括卷积神经网络。然后,我们对应用于放射学的深度学习研究进行了调查。我们根据它们试图解决的特定任务类型对这些研究进行了组织,并回顾了广泛使用的深度学习算法。最后,我们简要讨论了在未来的放射学实践中纳入深度学习的机会和挑战。

证据水平

3 技术功效:阶段 1 J. Magn. Reson. Imaging 2019;49:939-954.

相似文献

2
Artificial intelligence in medical imaging.医学影像中的人工智能。
Magn Reson Imaging. 2020 May;68:A1-A4. doi: 10.1016/j.mri.2019.12.006. Epub 2019 Dec 16.
4
Artificial intelligence in radiology.人工智能在放射学中的应用。
Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.
5
Deep learning: definition and perspectives for thoracic imaging.深度学习:胸部影像学的定义和展望。
Eur Radiol. 2020 Apr;30(4):2021-2030. doi: 10.1007/s00330-019-06564-3. Epub 2019 Dec 6.
7
Rise of the Machines: Advances in Deep Learning for Cancer Diagnosis.机器的崛起:深度学习在癌症诊断中的进展
Trends Cancer. 2019 Mar;5(3):157-169. doi: 10.1016/j.trecan.2019.02.002. Epub 2019 Feb 28.
8
Artificial intelligence in medical imaging of the liver.人工智能在肝脏医学影像中的应用。
World J Gastroenterol. 2019 Feb 14;25(6):672-682. doi: 10.3748/wjg.v25.i6.672.
9
Understanding deep learning - challenges and prospects.理解深度学习——挑战与展望。
J Pak Med Assoc. 2022 Feb;72(Suppl 1)(2):S59-S63. doi: 10.47391/JPMA.AKU-12.

引用本文的文献

本文引用的文献

1
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.广义骰子重叠作为高度不平衡分割的深度学习损失函数
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
2
Deep learning for identifying radiogenomic associations in breast cancer.深度学习在乳腺癌放射基因组关联识别中的应用。
Comput Biol Med. 2019 Jun;109:85-90. doi: 10.1016/j.compbiomed.2019.04.018. Epub 2019 Apr 25.
5
Focal Loss for Dense Object Detection.用于密集目标检测的焦散损失
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327. doi: 10.1109/TPAMI.2018.2858826. Epub 2018 Jul 23.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验