Department of Medical Physics in Radiation Oncology, German Cancer Research Centre, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
Medical Informatics, Heilbronn University, Max-Planck-Str. 39, 74081, Heilbronn, Germany.
Int J Comput Assist Radiol Surg. 2020 Mar;15(3):491-501. doi: 10.1007/s11548-019-02104-y. Epub 2019 Dec 12.
PURPOSE: Radiation treatment is improved by the use of image-guided workflows. This work pursues the approach of using ultrasound (US) as a real-time imaging modality. The primary focus of this study is to develop and test a breathing and motion control for a robotic-guided US transducer. All control functions of the robot and the US image processing were then integrated into one software platform enabling US-guided radiation therapy. METHODS: The robot (KUKA LBR iiwa 7 R800) and the US image processing workflows were integrated into the Medical Interaction Toolkit (MITK) (Nolden et al. in Int J Comput Assist Radiol Surg 8(4):607-620, 2013). The positions of the US probe were tracked with an optical tracking system. As a main function of robot positioning control, a highly sensitive breathing and motion compensation method was developed using KUKA's robotic application programming interface. The resulting autonomous robot motions were tested by the use of defined breathing patterns with two volunteers. Furthermore, a filter pipeline for 3D US image processing with MITK was developed. Thus, image registration of US images and previously acquired planning image data was enabled. RESULTS: The implemented breathing and motion compensation feature was successful with the addition of the remote rotating, translating capability of the US probe. Desired force applied to the US probe, and thus to the patient, is stable and enables a continuous US imaging. The developed filter pipeline for image processing facilitates registration and display of planning data and US image data in one graphical user interface. CONCLUSION: A stable and robust method for motion compensation for robot-assisted US imaging was developed and tested successfully. This is a first step toward the safe use of autonomous robot motions in interaction with patients. Furthermore, main software components were integrated into a single platform and used with the purpose of ultrasound-guided radiation therapy.
目的:图像引导工作流程可提高放射治疗效果。本研究旨在采用超声(US)作为实时成像方式。本研究的主要目的是开发和测试一种用于机器人引导 US 换能器的呼吸和运动控制系统。然后,将机器人的所有控制功能和 US 图像处理集成到一个软件平台中,以实现 US 引导的放射治疗。
方法:机器人(KUKA LBR iiwa 7 R800)和 US 图像处理工作流程集成到 Medical Interaction Toolkit(MITK)中(Nolden 等人,Int J Comput Assist Radiol Surg 8(4):607-620,2013)。US 探头的位置通过光学跟踪系统进行跟踪。作为机器人定位控制的主要功能,使用 KUKA 的机器人应用程序接口开发了一种高度敏感的呼吸和运动补偿方法。使用两名志愿者的定义呼吸模式对产生的自主机器人运动进行了测试。此外,还开发了一个用于 MITK 的 3D US 图像处理的滤波器管道。因此,实现了 US 图像和先前获取的规划图像数据的图像配准。
结果:成功实现了呼吸和运动补偿功能,增加了 US 探头的远程旋转和平移功能。施加到 US 探头(进而施加到患者)的所需力稳定,可实现连续的 US 成像。开发的图像处理滤波器管道便于在一个图形用户界面中注册和显示规划数据和 US 图像数据。
结论:成功开发和测试了用于机器人辅助 US 成像的运动补偿的稳定且强大的方法。这是在与患者交互中安全使用自主机器人运动的第一步。此外,主要软件组件已集成到一个单一平台中,并用于 US 引导的放射治疗。
Int J Comput Assist Radiol Surg. 2019-12-12
Med Image Comput Comput Assist Interv. 2007
Int J Comput Assist Radiol Surg. 2016-9-29
Int J Comput Assist Radiol Surg. 2016-7-12
Int J Comput Assist Radiol Surg. 2021-3
Minim Invasive Ther Allied Technol. 2015-2
Phys Med Biol. 2019-10-4
Artif Intell Rev. 2025
Technol Cancer Res Treat. 2024
Int J Comput Assist Radiol Surg. 2024-3
Int J Comput Assist Radiol Surg. 2023-3
Int J Comput Assist Radiol Surg. 2022-11
Healthcare (Basel). 2022-2-18
Front Robot AI. 2021-7-12
Int J Comput Assist Radiol Surg. 2021-6