Suppr超能文献

基于多模态点云的机器人超声引导放疗中肿瘤定位方法。

A Multimodal Point Cloud-Based Method for Tumor Localization in Robotic Ultrasound-Guided Radiotherapy.

机构信息

Department of Radiotherapy, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China.

Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China.

出版信息

Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241273149. doi: 10.1177/15330338241273149.

Abstract

Part of the tumor localization methods in radiotherapy have poor real-time performance and may generate additional radiation. We propose a multimodal point cloud-based method for tumor localization in robotic ultrasound-guided radiotherapy, which only irradiates computed tomography (CT) during radiotherapy planning to avoid additional radiation. The tumor position was determined using the CT point cloud, and the red green blue depth (RGBD) point cloud was used to determine body surface scanning location corresponding to the tumor location. The relationship between the CT point cloud and RGBD point cloud was established through multi-modal point cloud registration. The point cloud was then used for robot tumor localization through coordinate transformation between camera and robot. The maximum mean absolute error of the tumor location in the X, Y, and Z directions of the robot coordinate system were 0.781, 1.334, and 1.490 mm, respectively. The average point-to-point translation mean absolute error between the actual and predicted positions of the localization points was 1.847 mm. The maximum error in the random positioning experiment was 1.77 mm. The proposed method is radiation free and has real-time performance, with tumor localization accuracy that meets the requirements of radiotherapy. The proposed method, which potentially reduces the risks associated with radiation exposure while ensuring efficient and accurate tumor localization, represents a promising advancement in the field of radiotherapy.

摘要

部分肿瘤定位方法在放射治疗中实时性能较差,并且可能会产生额外的辐射。我们提出了一种基于多模态点云的机器人超声引导放射治疗中的肿瘤定位方法,该方法仅在放射治疗计划期间对计算机断层扫描(CT)进行照射,以避免额外的辐射。使用 CT 点云确定肿瘤位置,并使用红绿蓝深度(RGBD)点云确定与肿瘤位置对应的体表扫描位置。通过多模态点云配准建立 CT 点云和 RGBD 点云之间的关系。然后通过相机和机器人之间的坐标变换对点云进行机器人肿瘤定位。机器人坐标系中 X、Y 和 Z 方向肿瘤位置的最大平均绝对误差分别为 0.781、1.334 和 1.490 mm。定位点的实际位置和预测位置之间的点到点平移平均绝对误差平均值为 1.847 mm。随机定位实验的最大误差为 1.77 mm。所提出的方法无辐射且具有实时性能,肿瘤定位精度满足放射治疗的要求。该方法潜在地降低了与辐射暴露相关的风险,同时确保了高效、准确的肿瘤定位,是放射治疗领域的一项有前途的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f078/11491879/dc7b86d5dd52/10.1177_15330338241273149-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验