Suppr超能文献

利用多光谱激光雷达数据进行单木树冠提取。

Individual Tree Crown Delineation Using Multispectral LiDAR Data.

机构信息

Department of Earth and Space Science and Engineering, York University, Keele Street, Toronto 4700, ON M3J 1P3, Canada.

Education and Research, Esri Canada, 900-12 Concorde Pl, Toronto 4700, ON M3C 3R8, Canada.

出版信息

Sensors (Basel). 2019 Dec 9;19(24):5421. doi: 10.3390/s19245421.

Abstract

In this study, multispectral Light Detection and Ranging (LiDAR) data were utilized to improve delineation of individual tree crowns (ITC) as an important step in individual tree analysis. A framework to integrate spectral and height information for ITC delineation was proposed, and the multi-scale algorithm for treetop detection developed in one of our previous studies was improved. In addition, an advanced region-based segmentation method that used detected treetops as seeds was proposed for segmentation of individual crowns based on their spectral, contextual, and height information. The proposed methods were validated with data acquired using Teledyne Optech's Titan LiDAR sensor. The sensor was operated at three wavelengths (1550 nm, 1064 nm, and 532 nm) within a study area located in the city of Toronto, ON, Canada. The proposed method achieved 80% accuracy, compared with manual delineation of crowns, considering both matched and partially matched crowns, which was 12% higher than that obtained by the earlier marker-controlled watershed (MCW) segmentation technique. Furthermore, the results showed that the integration of spectral and height information improved ITC delineation using either the proposed framework or MCW segmentation, compared with using either spectral or height information individually.

摘要

在这项研究中,利用多光谱光探测和测距(LiDAR)数据来改善单个树冠(ITC)的描绘,这是进行单棵树分析的重要步骤。提出了一种整合光谱和高度信息的框架,用于 ITC 描绘,并改进了我们之前研究中开发的用于树顶检测的多尺度算法。此外,提出了一种基于区域的高级分割方法,该方法使用检测到的树顶作为种子,基于树冠的光谱、上下文和高度信息对单个树冠进行分割。使用在加拿大安大略省多伦多市的研究区域中采集的 Teledyne Optech 的 Titan LiDAR 传感器数据对所提出的方法进行了验证。该传感器在三个波长(1550nm、1064nm 和 532nm)下运行。所提出的方法的准确度为 80%,与手动树冠描绘相比,考虑到匹配和部分匹配的树冠,这比早期的基于标记的分水岭(MCW)分割技术高出 12%。此外,结果表明,与单独使用光谱或高度信息相比,使用所提出的框架或 MCW 分割技术整合光谱和高度信息可改善 ITC 描绘。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/085d/6961008/02e3dbcda28d/sensors-19-05421-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验