Département de Géomatique Appliquée, Centre d'Applications et de Recherches en Télédétection (CARTEL), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
Geophoton Inc., Montreal, QC H3X 2T3, Canada.
Sensors (Basel). 2021 Dec 22;22(1):35. doi: 10.3390/s22010035.
Species identification is a critical factor for obtaining accurate forest inventories. This paper compares the same method of tree species identification (at the individual crown level) across three different types of airborne laser scanning systems (ALS): two linear lidar systems (monospectral and multispectral) and one single-photon lidar (SPL) system to ascertain whether current individual tree crown (ITC) species classification methods are applicable across all sensors. SPL is a new type of sensor that promises comparable point densities from higher flight altitudes, thereby increasing lidar coverage. Initial results indicate that the methods are indeed applicable across all of the three sensor types with broadly similar overall accuracies (Hardwood/Softwood, 83-90%; 12 species, 46-54%; 4 species, 68-79%), with SPL being slightly lower in all cases. The additional intensity features that are provided by multispectral ALS appear to be more beneficial to overall accuracy than the higher point density of SPL. We also demonstrate the potential contribution of lidar time-series data in improving classification accuracy (Hardwood/Softwood, 91%; 12 species, 58%; 4 species, 84%). Possible causes for lower SPL accuracy are (a) differences in the nature of the intensity features and (b) differences in first and second return distributions between the two linear systems and SPL. We also show that segmentation (and field-identified training crowns deriving from segmentation) that is performed on an initial dataset can be used on subsequent datasets with similar overall accuracy. To our knowledge, this is the first study to compare these three types of ALS systems for species identification at the individual tree level.
物种鉴定是获取准确森林清查数据的关键因素。本研究比较了三种不同类型的机载激光扫描系统(ALS)中相同的树种鉴定方法(个体树冠水平),包括两种线性激光雷达系统(单光谱和多光谱)和一种单光子激光雷达(SPL)系统,以确定当前的个体树冠(ITC)物种分类方法是否适用于所有传感器。SPL 是一种新型传感器,它有望在更高的飞行高度提供可比的点密度,从而增加激光雷达的覆盖范围。初步结果表明,这些方法确实适用于所有三种传感器类型,总体准确率大致相似(硬木/软木,83-90%;12 个物种,46-54%;4 个物种,68-79%),在所有情况下 SPL 的准确率略低。多光谱 ALS 提供的附加强度特征似乎比 SPL 的更高点密度更有利于总体准确率。我们还展示了激光雷达时间序列数据在提高分类准确率方面的潜力(硬木/软木,91%;12 个物种,58%;4 个物种,84%)。SPL 准确率较低的可能原因是:(a)强度特征的性质不同,以及(b)两种线性系统和 SPL 之间的首次和二次回波分布不同。我们还表明,在初始数据集上执行的分割(以及从分割中得出的现场识别的训练树冠)可以在具有相似总体准确率的后续数据集上使用。据我们所知,这是首次比较这三种类型的 ALS 系统在个体树水平上进行物种鉴定的研究。