Suppr超能文献

基于概率最优深度学习特征融合的超声图像乳腺癌分类

Breast Cancer Classification from Ultrasound Images Using Probability-Based Optimal Deep Learning Feature Fusion.

机构信息

Department of Computer Science, HITEC University Taxila, Taxila 47080, Pakistan.

College of Computer Science and Engineering, University of Ha'il, Ha'il 55211, Saudi Arabia.

出版信息

Sensors (Basel). 2022 Jan 21;22(3):807. doi: 10.3390/s22030807.

Abstract

After lung cancer, breast cancer is the second leading cause of death in women. If breast cancer is detected early, mortality rates in women can be reduced. Because manual breast cancer diagnosis takes a long time, an automated system is required for early cancer detection. This paper proposes a new framework for breast cancer classification from ultrasound images that employs deep learning and the fusion of the best selected features. The proposed framework is divided into five major steps: (i) data augmentation is performed to increase the size of the original dataset for better learning of Convolutional Neural Network (CNN) models; (ii) a pre-trained DarkNet-53 model is considered and the output layer is modified based on the augmented dataset classes; (iii) the modified model is trained using transfer learning and features are extracted from the global average pooling layer; (iv) the best features are selected using two improved optimization algorithms known as reformed differential evaluation (RDE) and reformed gray wolf (RGW); and (v) the best selected features are fused using a new probability-based serial approach and classified using machine learning algorithms. The experiment was conducted on an augmented Breast Ultrasound Images (BUSI) dataset, and the best accuracy was 99.1%. When compared with recent techniques, the proposed framework outperforms them.

摘要

肺癌之后,乳腺癌是导致女性死亡的第二大主要原因。如果乳腺癌能够早期发现,女性的死亡率可以降低。由于手动乳腺癌诊断需要很长时间,因此需要一个自动化系统来进行早期癌症检测。本文提出了一种新的基于超声图像的乳腺癌分类框架,该框架采用深度学习和最佳选择特征融合。该框架分为五个主要步骤:(i)进行数据扩充,以增加原始数据集的大小,从而更好地学习卷积神经网络(CNN)模型;(ii)考虑预训练的 DarkNet-53 模型,并根据扩充数据集的类别修改输出层;(iii)使用迁移学习训练修改后的模型,并从全局平均池化层提取特征;(iv)使用两种改进的优化算法(即改进的差分评估(RDE)和改进的灰狼(RGW))选择最佳特征;(v)使用新的基于概率的串行方法融合最佳选择的特征,并使用机器学习算法进行分类。实验在扩充的乳腺超声图像(BUSI)数据集上进行,最佳准确率为 99.1%。与最近的技术相比,该框架表现出色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e5/8840464/fdb344851b7f/sensors-22-00807-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验