Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
J Biol Chem. 2020 Jan 24;295(4):1047-1055. doi: 10.1074/jbc.RA119.011936. Epub 2019 Dec 15.
The lovastatin hydrolase PcEST from the fungus exhibits enormous potential for industrial-scale applications in single-step production of monacolin J, the key precursor for synthesis of the cholesterol-lowering drug simvastatin. This enzyme specifically and efficiently catalyzes the conversion of lovastatin to monacolin J but cannot hydrolyze simvastatin. Understanding the catalytic mechanism and the structure-function relationship of PcEST is therefore important for further lovastatin hydrolase screening, engineering, and commercial applications. Here, we solved four X-ray crystal structures, including apo PcEST (2.3 Å), PcEST in complex with monacolin J (2.48 Å), PcEST complexed with the substrate analog simvastatin (2.4 Å), and an inactivated PcEST variant (S57A) with the lovastatin substrate (2.3 Å). Structure-based biochemical analyses and mutagenesis assays revealed that the Ser (nucleophile)-Tyr (general base)-Lys (general acid) catalytic triad, the hydrogen-bond network (Trp and Tyr) around the active site, and the specific substrate-binding tunnel together determine efficient and specific lovastatin hydrolysis by PcEST. Moreover, steric effects on nucleophilic attack caused by the 2',2-dimethybutyryl group of simvastatin resulted in no activity of PcEST on simvastatin. On the basis of structural comparisons, we propose several indicators to define lovastatin esterases. Furthermore, using structure-guided enzyme engineering, we developed a PcEST variant, D106A, having improved solubility and thermostability, suggesting a promising application of this variant in industrial processes. To our knowledge, this is the first report describing the mechanism and structure-function relationship of lovastatin hydrolase and providing insights that may guide rapid screening and engineering of additional lovastatin esterase variants.
真菌来源的洛伐他汀水解酶 PcEST 在单步生产莫纳可林 J(合成降胆固醇药物辛伐他汀的关键前体)的工业规模应用中具有巨大潜力。该酶特异性且高效地催化洛伐他汀转化为莫纳可林 J,但不能水解辛伐他汀。因此,了解 PcEST 的催化机制和结构-功能关系对于进一步筛选、工程改造和商业应用洛伐他汀水解酶具有重要意义。在此,我们解析了四个 X 射线晶体结构,包括 apo PcEST(2.3Å)、与莫纳可林 J 结合的 PcEST(2.48Å)、与底物类似物辛伐他汀结合的 PcEST(2.4Å)以及与洛伐他汀底物结合的失活 PcEST 变体(S57A)(2.3Å)。基于结构的生化分析和突变体测定表明,Ser(亲核试剂)-Tyr(广义碱)-Lys(广义酸)催化三联体、活性位点周围的氢键网络(Trp 和 Tyr)以及特定的底物结合隧道共同决定了 PcEST 对洛伐他汀的高效和特异性水解。此外,辛伐他汀 2',2-二甲基丁酰基引起的亲核进攻的空间位阻导致 PcEST 对辛伐他汀无活性。基于结构比较,我们提出了几个指标来定义洛伐他汀酯酶。此外,我们利用结构导向的酶工程,开发了一个具有改善的溶解性和热稳定性的 PcEST 变体 D106A,这表明该变体在工业过程中有很好的应用前景。据我们所知,这是首次描述洛伐他汀水解酶的机制和结构-功能关系的报告,并提供了可能指导快速筛选和工程改造其他洛伐他汀酯酶变体的见解。