Suppr超能文献

个体在言语分布学习上的差异:理想观察者的理想条件是什么?

Individual Differences in Distributional Learning for Speech: What's Ideal for Ideal Observers?

机构信息

Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs.

Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs.

出版信息

J Speech Lang Hear Res. 2019 Dec 16;63(1):1-13. doi: 10.1044/2019_JSLHR-S-19-0152. Print 2020 Jan 22.

Abstract

Purpose Speech perception is facilitated by listeners' ability to dynamically modify the mapping to speech sounds given systematic variation in speech input. For example, the degree to which listeners show categorical perception of speech input changes as a function of distributional variability in the input, with perception becoming less categorical as the input, becomes more variable. Here, we test the hypothesis that higher level receptive language ability is linked to the ability to adapt to low-level distributional cues in speech input. Method Listeners ( = 58) completed a distributional learning task consisting of 2 blocks of phonetic categorization for words beginning with /g/ and /k/. In 1 block, the distributions of voice onset time values specifying /g/ and /k/ had narrow variances (i.e., minimal variability). In the other block, the distributions of voice onset times specifying /g/ and /k/ had wider variances (i.e., increased variability). In addition, all listeners completed an assessment battery for receptive language, nonverbal intelligence, and reading fluency. Results As predicted by an ideal observer computational framework, the participants in aggregate showed identification responses that were more categorical for consistent compared to inconsistent input, indicative of distributional learning. However, the magnitude of learning across participants showed wide individual variability, which was predicted by receptive language ability but not by nonverbal intelligence or by reading fluency. Conclusion The results suggest that individual differences in distributional learning for speech are linked, at least in part, to receptive language ability, reflecting a decreased ability among those with weaker receptive language to capitalize on consistent input distributions.

摘要

目的 语音感知是由听者动态调整语音输入映射的能力来实现的,这种能力受语音输入系统变化的影响。例如,听者对语音输入的范畴感知程度会随着输入分布的可变性而变化,随着输入变得更加多变,感知变得越来越不具有范畴性。在这里,我们检验了这样一个假设,即更高水平的接受性语言能力与适应语音输入中低级分布线索的能力有关。 方法 参与者(n=58)完成了一个分布学习任务,包括两个以/g/和/k/开头的单词的语音分类块。在一个块中,指定/g/和/k/的语音起始时间值的分布具有较小的方差(即最小的可变性)。在另一个块中,指定/g/和/k/的语音起始时间值的分布具有较大的方差(即增加了可变性)。此外,所有参与者都完成了接受性语言、非语言智力和阅读流畅性的评估测试。 结果 如理想观察者计算框架所预测的,参与者的整体识别反应在一致输入时比不一致输入更具有范畴性,这表明了分布学习的存在。然而,参与者之间的学习幅度存在很大的个体差异,这种差异可以由接受性语言能力预测,但不能由非语言智力或阅读流畅性预测。 结论 这些结果表明,语音分布学习的个体差异至少部分与接受性语言能力有关,这反映了那些接受性语言能力较弱的人利用一致输入分布的能力下降。

相似文献

1
Individual Differences in Distributional Learning for Speech: What's Ideal for Ideal Observers?
J Speech Lang Hear Res. 2019 Dec 16;63(1):1-13. doi: 10.1044/2019_JSLHR-S-19-0152. Print 2020 Jan 22.
2
Distributional learning for speech reflects cumulative exposure to a talker's phonetic distributions.
Psychon Bull Rev. 2019 Jun;26(3):985-992. doi: 10.3758/s13423-018-1551-5.
3
Individual differences in perceptual adaptability of foreign sound categories.
Atten Percept Psychophys. 2016 Jan;78(1):355-67. doi: 10.3758/s13414-015-0987-1.
4
Infant-directed speech supports phonetic category learning in English and Japanese.
Cognition. 2007 Apr;103(1):147-62. doi: 10.1016/j.cognition.2006.03.006. Epub 2006 May 16.
6
Experience with a second language affects the use of fundamental frequency in speech segmentation.
PLoS One. 2017 Jul 24;12(7):e0181709. doi: 10.1371/journal.pone.0181709. eCollection 2017.
7
Structural neural correlates of individual differences in categorical perception.
Brain Lang. 2021 Apr;215:104919. doi: 10.1016/j.bandl.2021.104919. Epub 2021 Jan 29.
8
Talker-specific influences on phonetic category structure.
J Acoust Soc Am. 2015 Aug;138(2):1068-78. doi: 10.1121/1.4927489.
9
Statistical phonetic learning in infants: facilitation and feature generalization.
Dev Sci. 2008 Jan;11(1):122-34. doi: 10.1111/j.1467-7687.2007.00653.x.
10
Listeners are maximally flexible in updating phonetic beliefs over time.
Psychon Bull Rev. 2018 Apr;25(2):718-724. doi: 10.3758/s13423-017-1376-7.

引用本文的文献

1
Validation of two measures for assessing English vocabulary knowledge on web-based testing platforms: long-form assessments.
Linguist Vanguard. 2023 Sep 13;9(1):113-124. doi: 10.1515/lingvan-2022-0115. eCollection 2023 Dec.
2
Validation of two measures for assessing English vocabulary knowledge on web-based testing platforms: brief assessments.
Linguist Vanguard. 2023 Sep 13;9(1):99-111. doi: 10.1515/lingvan-2022-0116. eCollection 2023 Dec.
3
Implicit learning and individual differences in speech recognition: an exploratory study.
Front Psychol. 2023 Sep 7;14:1238823. doi: 10.3389/fpsyg.2023.1238823. eCollection 2023.
4
Don't force it! Gradient speech categorization calls for continuous categorization tasks.
J Acoust Soc Am. 2022 Dec;152(6):3728. doi: 10.1121/10.0015201.
5
Perceptual learning of multiple talkers: Determinants, characteristics, and limitations.
Atten Percept Psychophys. 2022 Oct;84(7):2335-2359. doi: 10.3758/s13414-022-02556-6. Epub 2022 Sep 8.
6
Computational Modeling of an Auditory Lexical Decision Experiment Using DIANA.
Lang Speech. 2023 Sep;66(3):564-605. doi: 10.1177/00238309221111752. Epub 2022 Aug 24.
7
Individual Differences in Lexical Contributions to Speech Perception.
J Speech Lang Hear Res. 2021 Mar 17;64(3):707-724. doi: 10.1044/2020_JSLHR-20-00283. Epub 2021 Feb 19.
8
Deficits of Learning in Procedural Memory and Consolidation in Declarative Memory in Adults With Developmental Language Disorder.
J Speech Lang Hear Res. 2021 Feb 17;64(2):531-541. doi: 10.1044/2020_JSLHR-20-00292. Epub 2021 Feb 1.
9
The Fast-Mapping Abilities of Adults With Developmental Language Disorder.
J Speech Lang Hear Res. 2020 Sep 15;63(9):3117-3129. doi: 10.1044/2020_JSLHR-19-00418. Epub 2020 Aug 13.
10

本文引用的文献

1
Distributional learning for speech reflects cumulative exposure to a talker's phonetic distributions.
Psychon Bull Rev. 2019 Jun;26(3):985-992. doi: 10.3758/s13423-018-1551-5.
2
The Role of Lexical Status and Individual Differences for Perceptual Learning in Younger and Older Adults.
J Speech Lang Hear Res. 2018 Aug 8;61(8):1855-1874. doi: 10.1044/2018_JSLHR-S-17-0392.
3
Adults with Specific Language Impairment fail to consolidate speech sounds during sleep.
Neurosci Lett. 2018 Feb 14;666:58-63. doi: 10.1016/j.neulet.2017.12.030. Epub 2017 Dec 15.
4
Distributional Learning in College Students With Developmental Language Disorder.
J Speech Lang Hear Res. 2017 Nov 9;60(11):3270-3283. doi: 10.1044/2017_JSLHR-L-17-0013.
5
Towards a theory of individual differences in statistical learning.
Philos Trans R Soc Lond B Biol Sci. 2017 Jan 5;372(1711). doi: 10.1098/rstb.2016.0059.
7
Sequence-specific procedural learning deficits in children with specific language impairment.
Dev Sci. 2014 May;17(3):352-65. doi: 10.1111/desc.12125. Epub 2014 Jan 11.
9
On-line individual differences in statistical learning predict language processing.
Front Psychol. 2010 Sep 14;1:31. doi: 10.3389/fpsyg.2010.00031. eCollection 2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验