Suppr超能文献

一步法合成抗菌肽保护的银纳米粒子:抗菌活性的核壳协同增强。

One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity.

机构信息

Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 29 East Erdos Street, Hohhot, 010011, PR China.

School of Biomedical Engineering, Shanghai Jiaotong University, 800 Dongchuan RD, Minhang District, Shanghai, 200241, PR China.

出版信息

Colloids Surf B Biointerfaces. 2020 Feb;186:110704. doi: 10.1016/j.colsurfb.2019.110704. Epub 2019 Dec 3.

Abstract

Over the past few decades, the overuse of antibiotics has led to the emergence of resistant bacteria and environmental issues. Both silver nanoparticles (AgNPs) and antimicrobial peptides (AMPs) hold potential to replace antibiotics. Combining both AMPs and AgNPs into a composite material may create novel properties such as enhanced antibacterial activity, lower cytotoxicity and favorable stability in aqueous solution. We designed a 13 amino acid peptide (in short, P-13) with two functional regions: one is for antibacterial activity, and the other for reducing and stabilizing AgNPs with containing cysteine (C) residues in its C-terminus. With a single step reaction, we have successfully synthesized P-13 protected AgNPs (P-13@AgNPs) with a hydrodynamic diameter of about 11 nm. In the preliminary antibacterial activity assay, the minimum inhibitory concentrations (MICs) of P-13@AgNPs were up to 7.8 μg/mL against E. coli, S. aureus and B. pumilus, and 15.6 μg/mL against P. aeruginosa. Moreover, Flow cytometry analysis of E. coli, S. aureus, P. aeruginosa and B. pumilus show that the mortality of the strains reached 96 %, 96 %, 91 % and 90 %, respectively. The cytotoxicity of AgNPs was reduced dramatically after protected by P-13, and P-13 was favorable for the stability of the AgNPs solution. We believe this work could set up an example to make the best use of the individual material's properties to produce novel nanocomposites with better antibacterial activity.

摘要

在过去几十年中,抗生素的过度使用导致了耐药细菌的出现和环境问题。纳米银颗粒 (AgNPs) 和抗菌肽 (AMPs) 都有潜力替代抗生素。将 AMPs 和 AgNPs 结合到复合材料中可能会产生新的特性,例如增强的抗菌活性、更低的细胞毒性和在水溶液中的良好稳定性。我们设计了一种由 13 个氨基酸组成的肽 (简称 P-13),它具有两个功能区域:一个用于抗菌活性,另一个用于减少和稳定 AgNPs,其 C 末端含有半胱氨酸 (C) 残基。通过一步反应,我们成功地合成了 P-13 保护的 AgNPs (P-13@AgNPs),其水动力学直径约为 11nm。在初步的抗菌活性测定中,P-13@AgNPs 对大肠杆菌、金黄色葡萄球菌和短小芽孢杆菌的最小抑菌浓度 (MIC) 高达 7.8μg/mL,对铜绿假单胞菌的 MIC 为 15.6μg/mL。此外,对大肠杆菌、金黄色葡萄球菌、铜绿假单胞菌和短小芽孢杆菌的流式细胞术分析表明,这些菌株的死亡率分别达到 96%、96%、91%和 90%。AgNPs 的细胞毒性在被 P-13 保护后显著降低,P-13 有利于 AgNPs 溶液的稳定性。我们相信这项工作可以为利用个体材料的特性来制备具有更好抗菌活性的新型纳米复合材料树立一个范例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验