Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
Nat Chem Biol. 2020 Feb;16(2):197-205. doi: 10.1038/s41589-019-0431-2. Epub 2019 Dec 16.
Phospholipids, the most abundant membrane lipid components, are crucial in maintaining membrane structures and homeostasis for biofunctions. As a structurally diverse and tightly regulated system involved in multiple organelles, phospholipid metabolism is complicated to manipulate. Thus, repurposing phospholipids for lipid-derived chemical production remains unexplored. Herein, we develop a Saccharomyces cerevisiae platform for de novo production of oleoylethanolamide, a phospholipid derivative with promising pharmacological applications in ameliorating lipid dysfunction and neurobehavioral symptoms. Through deregulation of phospholipid metabolism, screening of biosynthetic enzymes, engineering of subcellular trafficking and process optimization, we could produce oleoylethanolamide at a titer of 8,115.7 µg l and a yield on glucose of 405.8 µg g. Our work provides a proof-of-concept study for systemically repurposing phospholipid metabolism for conversion towards value-added biological chemicals, and this multi-faceted framework may shed light on tailoring phospholipid metabolism in other microbial hosts.
磷脂是最丰富的膜脂质成分,对维持膜结构和生物功能的动态平衡至关重要。作为一个涉及多个细胞器的结构多样且受到严格调控的系统,磷脂代谢的调控非常复杂。因此,将磷脂重新用于脂质衍生的化学品生产仍有待探索。本研究构建了一种新型酿酒酵母平台,用于从头合成具有潜在药理学应用的油酰乙醇酰胺,该化合物可改善脂质功能障碍和神经行为症状。通过对磷脂代谢的调控、生物合成酶的筛选、亚细胞运输的工程改造和过程优化,我们可以在葡萄糖上达到 8,115.7μg/L 的产量和 405.8μg/g 的产率。本工作为系统地重新利用磷脂代谢转化为有价值的生物化学品提供了概念验证研究,这一多方面的框架可能为在其他微生物宿主中定制磷脂代谢提供思路。