Suppr超能文献

通过综合回归和稀疏典型相关分析实现诊断状态引导的脑成像遗传学

DIAGNOSIS STATUS GUIDED BRAIN IMAGING GENETICS VIA INTEGRATED REGRESSION AND SPARSE CANONICAL CORRELATION ANALYSIS.

作者信息

Du Lei, Liu Kefei, Yao Xiaohui, Risacher Shannon L, Guo Lei, Saykin Andrew J, Shen Li

机构信息

School of Automation, Northwestern Polytechnical University, Xi'an, China.

University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:356-359. doi: 10.1109/ISBI.2019.8759489. Epub 2019 Jul 11.

Abstract

Brain imaging genetics use the imaging quantitative traits (QTs) as intermediate endophenotypes to identify the genetic basis of the brain structure, function and abnormality. The regression and canonical correlation analysis (CCA) coupled with sparsity regularization are widely used in imaging genetics. The regression only selects relevant features for predictors. SCCA overcomes this but is unsupervised and thus could not make use of the diagnosis information. We propose a novel method integrating regression and SCCA together to construct a supervised sparse bi-multivariate learning model. The regression part plays a role of providing guidance for imaging QTs selection, and the SCCA part is focused on selecting relevant genetic markers and imaging QTs. We propose an efficient algorithm based on the alternative search method. Our method obtains better feature selection results than both regression and SCCA on both synthetic and real neuroimaging data. This demonstrates that our method is a promising bi-multivariate tool for brain imaging genetics.

摘要

脑成像遗传学利用成像定量特征(QTs)作为中间内表型来识别脑结构、功能及异常的遗传基础。结合稀疏正则化的回归分析和典型相关分析(CCA)在成像遗传学中被广泛应用。回归分析仅为预测变量选择相关特征。稀疏典型相关分析(SCCA)克服了这一问题,但它是无监督的,因此无法利用诊断信息。我们提出了一种将回归分析和SCCA整合在一起的新方法,以构建一个有监督的稀疏双多变量学习模型。回归部分为成像QTs的选择提供指导,而SCCA部分则专注于选择相关的遗传标记和成像QTs。我们基于交替搜索方法提出了一种高效算法。在合成和真实神经影像数据上,我们的方法比回归分析和SCCA都获得了更好的特征选择结果。这表明我们的方法是脑成像遗传学中一种很有前景的双多变量工具。

相似文献

2
Fast Multi-Task SCCA Learning with Feature Selection for Multi-Modal Brain Imaging Genetics.基于多模态脑成像遗传学特征选择的快速多任务SCCA学习
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2018 Dec;2018:356-361. doi: 10.1109/BIBM.2018.8621298. Epub 2019 Jan 24.
6
Transcriptome-Guided Imaging Genetic Analysis via a Novel Sparse CCA Algorithm.通过一种新型稀疏典型相关分析算法进行转录组引导的成像遗传分析。
Graphs Biomed Image Anal Comput Anat Imaging Genet (2017). 2017;10551:220-229. doi: 10.1007/978-3-319-67675-3_20. Epub 2017 Sep 8.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验