Suppr超能文献

遗传结构限制了细菌中铁载体合作的利用。

Genetic architecture constrains exploitation of siderophore cooperation in the bacterium .

作者信息

Sathe Santosh, Mathew Anugraha, Agnoli Kirsty, Eberl Leo, Kümmerli Rolf

机构信息

Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.

Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland.

出版信息

Evol Lett. 2019 Dec;3(6):610-622. doi: 10.1002/evl3.144. Epub 2019 Oct 2.

Abstract

Explaining how cooperation can persist in the presence of cheaters, exploiting the cooperative acts, is a challenge for evolutionary biology. Microbial systems have proved extremely useful to test evolutionary theory and identify mechanisms maintaining cooperation. One of the most widely studied system is the secretion and sharing of iron-scavenging siderophores by bacteria, with many insights gained from this system now being considered as hallmarks of bacterial cooperation. Here, we introduce siderophore secretion by the bacterium H111 as a novel parallel study system, and show that this system behaves differently. For ornibactin, the main siderophore of this species, we discovered a novel mechanism of how cheating can be prevented. Particularly, we found that secreted ornibactin cannot be exploited by ornibactin-defective mutants because ornibactin receptor and synthesis genes are co-expressed from the same operon, such that disruptive mutations in synthesis genes compromise receptor availability required for siderophore uptake and cheating. For pyochelin, the secondary siderophore of this species, we found that cheating was possible, but the relative success of cheaters was positive frequency-dependent, thus diametrically opposite to the and other microbial systems. Altogether, our results highlight that expanding our repertoire of microbial study systems leads to new discoveries and suggest that there is an enormous diversity of social interactions out there in nature, and we might have only looked at the tip of the iceberg so far.

摘要

解释在存在作弊者(即利用合作行为的个体)的情况下合作如何持续存在,是进化生物学面临的一项挑战。微生物系统已被证明对于检验进化理论和识别维持合作的机制极为有用。其中一个研究最为广泛的系统是细菌分泌和共享铁载体,从这个系统中获得的许多见解现在被视为细菌合作的标志。在这里,我们引入细菌H111的铁载体分泌作为一个新的平行研究系统,并表明这个系统的行为有所不同。对于该物种的主要铁载体鸟氨酸铁载体,我们发现了一种防止作弊的新机制。特别是,我们发现分泌的鸟氨酸铁载体不能被缺乏鸟氨酸铁载体的突变体利用,因为鸟氨酸铁载体受体和合成基因从同一个操纵子中共表达,因此合成基因中的破坏性突变会损害铁载体摄取和作弊所需的受体可用性。对于该物种的次要铁载体绿脓菌素,我们发现作弊是可能的,但作弊者的相对成功率呈正频率依赖性,因此与其他微生物系统截然相反。总之,我们的结果强调,扩展我们的微生物研究系统库会带来新的发现,并表明自然界中存在着极其多样的社会互动,而到目前为止我们可能只看到了冰山一角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/601d/6906993/b3f52ace9bc1/EVL3-3-610-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验