Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P R China.
Department of Biology, University of York, York, UK.
Nat Microbiol. 2020 Aug;5(8):1002-1010. doi: 10.1038/s41564-020-0719-8. Epub 2020 May 11.
Plant pathogenic bacteria cause high crop and economic losses to human societies. Infections by such pathogens are challenging to control as they often arise through complex interactions between plants, pathogens and the plant microbiome. Experimental studies of this natural ecosystem at the microbiome-wide scale are rare, and consequently we have a poor understanding of how the taxonomic and functional microbiome composition and the resulting ecological interactions affect pathogen growth and disease outbreak. Here, we combine DNA-based soil microbiome analysis with in vitro and in planta bioassays to show that competition for iron via secreted siderophore molecules is a good predictor of microbe-pathogen interactions and plant protection. We examined the ability of 2,150 individual bacterial members of 80 rhizosphere microbiomes, covering all major phylogenetic lineages, to suppress the bacterium Ralstonia solanacearum, a global phytopathogen capable of infecting various crops. We found that secreted siderophores altered microbiome-pathogen interactions from complete pathogen suppression to strong facilitation. Rhizosphere microbiome members with growth-inhibitory siderophores could often suppress the pathogen in vitro as well as in natural and greenhouse soils, and protect tomato plants from infection. Conversely, rhizosphere microbiome members with growth-promotive siderophores were often inferior in competition and facilitated plant infection by the pathogen. Because siderophores are a chemically diverse group of molecules, with each siderophore type relying on a compatible receptor for iron uptake, our results suggest that pathogen-suppressive microbiome members produce siderophores that the pathogen cannot use. Our study establishes a causal mechanistic link between microbiome-level competition for iron and plant protection and opens promising avenues to use siderophore-mediated interactions as a tool for microbiome engineering and pathogen control.
植物病原菌会给人类社会造成高作物和经济损失。由于这些病原体的感染通常是通过植物、病原体和植物微生物组之间的复杂相互作用引起的,因此控制它们具有挑战性。在微生物组范围内对这种自然生态系统进行实验研究很少,因此我们对分类和功能微生物组组成以及由此产生的生态相互作用如何影响病原体生长和疾病爆发知之甚少。在这里,我们结合基于 DNA 的土壤微生物组分析与体外和体内生物测定,表明通过分泌铁载体分子进行铁竞争是微生物-病原体相互作用和植物保护的良好预测指标。我们检查了 80 个根际微生物组中 2,150 个单个细菌成员的能力,这些细菌涵盖了所有主要的系统发育谱系,以抑制能够感染各种作物的全球植物病原体青枯菌。我们发现,分泌的铁载体改变了微生物组-病原体相互作用,从完全抑制病原体到强烈促进。具有生长抑制性铁载体的根际微生物组成员通常可以在体外以及天然和温室土壤中抑制病原体,并保护番茄植物免受感染。相反,具有生长促进性铁载体的根际微生物组成员在竞争中通常较差,并促进病原体感染植物。由于铁载体是一组化学多样性的分子,每种铁载体类型都依赖于相容的受体来摄取铁,因此我们的结果表明,具有病原体抑制性的微生物组成员产生的铁载体病原体无法利用。我们的研究建立了微生物组水平铁竞争与植物保护之间的因果机制联系,并为利用铁载体介导的相互作用作为微生物组工程和病原体控制的工具开辟了有希望的途径。