Suppr超能文献

通过生物信息学分析鉴定非小细胞肺癌中的关键基因

Identification of key genes in non-small cell lung cancer by bioinformatics analysis.

作者信息

Zhang Li, Peng Rui, Sun Yan, Wang Jia, Chong Xinyu, Zhang Zheng

机构信息

Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China.

Department of Bioinformatics, Chongqing Medical University, Chongqing, China.

出版信息

PeerJ. 2019 Dec 12;7:e8215. doi: 10.7717/peerj.8215. eCollection 2019.

Abstract

BACKGROUND

Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors in the world, and it has become the leading cause of death of malignant tumors. However, its mechanisms are not fully clear. The aim of this study is to investigate the key genes and explore their potential mechanisms involving in NSCLC.

METHODS

We downloaded gene expression profiles GSE33532, GSE30219 and GSE19804 from the Gene Expression Omnibus (GEO) database and analyzed them by using GEO2R. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used for the functional and pathway enrichment analysis. We constructed the protein-protein interaction (PPI) network by STRING and visualized it by Cytoscape. Further, we performed module analysis and centrality analysis to find the potential key genes. Finally, we carried on survival analysis of key genes by GEPIA.

RESULTS

In total, we obtained 685 DEGs. Moreover, GO analysis showed that they were mainly enriched in cell adhesion, proteinaceous extracellular region, heparin binding. KEGG pathway analysis revealed that transcriptional misregulation in cancer, ECM-receptor interaction, cell cycle and p53 signaling pathway were involved in. Furthermore, PPI network was constructed including 249 nodes and 1,027 edges. Additionally, a significant module was found, which included eight candidate genes with high centrality features. Further, among the eight candidate genes, the survival of NSCLC patients with the seven high expression genes were significantly worse, including CDK1, CCNB1, CCNA2, BIRC5, CCNB2, KIAA0101 and MELK. In summary, these identified genes should play an important role in NSCLC, which can provide new insight for NSCLC research.

摘要

背景

非小细胞肺癌(NSCLC)是世界上最常见的恶性肿瘤之一,已成为恶性肿瘤死亡的主要原因。然而,其发病机制尚不完全清楚。本研究旨在探讨NSCLC中的关键基因,并探索其潜在机制。

方法

我们从基因表达综合数据库(GEO)下载了基因表达谱GSE33532、GSE30219和GSE19804,并使用GEO2R进行分析。利用基因本体论(Gene Ontology)和京都基因与基因组百科全书(KEGG)进行功能和通路富集分析。我们通过STRING构建蛋白质-蛋白质相互作用(PPI)网络,并通过Cytoscape进行可视化。此外,我们进行了模块分析和中心性分析以寻找潜在的关键基因。最后,我们通过GEPIA对关键基因进行生存分析。

结果

我们共获得685个差异表达基因(DEG)。此外,基因本体论分析表明,它们主要富集于细胞黏附、蛋白质细胞外区域、肝素结合。KEGG通路分析显示,癌症中的转录失调、细胞外基质-受体相互作用、细胞周期和p53信号通路均参与其中。此外,构建的PPI网络包含249个节点和1027条边。另外,发现了一个显著模块,其中包括八个具有高中心性特征的候选基因。进一步研究发现,在这八个候选基因中,NSCLC患者中七个高表达基因(包括CDK1、CCNB1、CCNA2、BIRC5、CCNB2、KIAA0101和MELK)的生存情况明显较差。总之,这些鉴定出的基因在NSCLC中应发挥重要作用,可为NSCLC研究提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验