Plant Breeding and Genetics Section, School of Integrative Plant Science.
Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
G3 (Bethesda). 2020 Feb 6;10(2):769-781. doi: 10.1534/g3.119.400759.
The ability to connect genetic information between traits over time allow Bayesian networks to offer a powerful probabilistic framework to construct genomic prediction models. In this study, we phenotyped a diversity panel of 869 biomass sorghum ( (L.) Moench) lines, which had been genotyped with 100,435 SNP markers, for plant height (PH) with biweekly measurements from 30 to 120 days after planting (DAP) and for end-of-season dry biomass yield (DBY) in four environments. We evaluated five genomic prediction models: Bayesian network (BN), Pleiotropic Bayesian network (PBN), Dynamic Bayesian network (DBN), multi-trait GBLUP (MTr-GBLUP), and multi-time GBLUP (MTi-GBLUP) models. In fivefold cross-validation, prediction accuracies ranged from 0.46 (PBN) to 0.49 (MTr-GBLUP) for DBY and from 0.47 (DBN, DAP120) to 0.75 (MTi-GBLUP, DAP60) for PH. Forward-chaining cross-validation further improved prediction accuracies of the DBN, MTi-GBLUP and MTr-GBLUP models for PH (training slice: 30-45 DAP) by 36.4-52.4% relative to the BN and PBN models. Coincidence indices (target: biomass, secondary: PH) and a coincidence index based on lines (PH time series) showed that the ranking of lines by PH changed minimally after 45 DAP. These results suggest a two-level indirect selection method for PH at harvest (first-level target trait) and DBY (second-level target trait) could be conducted earlier in the season based on ranking of lines by PH at 45 DAP (secondary trait). With the advance of high-throughput phenotyping technologies, our proposed two-level indirect selection framework could be valuable for enhancing genetic gain per unit of time when selecting on developmental traits.
贝叶斯网络能够在不同时间的性状之间连接遗传信息,为构建基因组预测模型提供了强大的概率框架。在这项研究中,我们对 869 个生物质高粱((L.)Moench)品系进行了表型分析,这些品系已经使用 100435 个 SNP 标记进行了基因型分析,用于在种植后 30 至 120 天(DAP)期间进行植物高度(PH)的双周测量,以及在四个环境中进行终季干生物量产量(DBY)。我们评估了五种基因组预测模型:贝叶斯网络(BN)、多效贝叶斯网络(PBN)、动态贝叶斯网络(DBN)、多性状 GBLUP(MTr-GBLUP)和多时间 GBLUP(MTi-GBLUP)模型。在五重交叉验证中,DBY 的预测准确性范围为 0.46(PBN)至 0.49(MTr-GBLUP),PH 的预测准确性范围为 0.47(DBN、DAP120)至 0.75(MTi-GBLUP、DAP60)。前向链接交叉验证进一步提高了 DBN、MTi-GBLUP 和 MTr-GBLUP 模型对 PH 的预测准确性(训练切片:30-45 DAP),相对 BN 和 PBN 模型提高了 36.4-52.4%。目标:生物量,次要:PH)和基于品系的吻合指数(PH 时间序列)表明,在 45 DAP 后,通过 PH 对品系进行的排名变化最小。这些结果表明,在收获时(一级目标性状)和 DBY(二级目标性状)对 PH 进行二级间接选择的方法可以更早地进行,方法是根据 45 DAP 时 PH 的品系排名(二级性状)进行。随着高通量表型技术的进步,我们提出的两级间接选择框架在选择发育性状时,可以提高单位时间内的遗传增益。