Suppr超能文献

新型贝叶斯网络在生物量高粱发育性状基因组预测中的应用。

Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum.

机构信息

Plant Breeding and Genetics Section, School of Integrative Plant Science.

Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil.

出版信息

G3 (Bethesda). 2020 Feb 6;10(2):769-781. doi: 10.1534/g3.119.400759.

Abstract

The ability to connect genetic information between traits over time allow Bayesian networks to offer a powerful probabilistic framework to construct genomic prediction models. In this study, we phenotyped a diversity panel of 869 biomass sorghum ( (L.) Moench) lines, which had been genotyped with 100,435 SNP markers, for plant height (PH) with biweekly measurements from 30 to 120 days after planting (DAP) and for end-of-season dry biomass yield (DBY) in four environments. We evaluated five genomic prediction models: Bayesian network (BN), Pleiotropic Bayesian network (PBN), Dynamic Bayesian network (DBN), multi-trait GBLUP (MTr-GBLUP), and multi-time GBLUP (MTi-GBLUP) models. In fivefold cross-validation, prediction accuracies ranged from 0.46 (PBN) to 0.49 (MTr-GBLUP) for DBY and from 0.47 (DBN, DAP120) to 0.75 (MTi-GBLUP, DAP60) for PH. Forward-chaining cross-validation further improved prediction accuracies of the DBN, MTi-GBLUP and MTr-GBLUP models for PH (training slice: 30-45 DAP) by 36.4-52.4% relative to the BN and PBN models. Coincidence indices (target: biomass, secondary: PH) and a coincidence index based on lines (PH time series) showed that the ranking of lines by PH changed minimally after 45 DAP. These results suggest a two-level indirect selection method for PH at harvest (first-level target trait) and DBY (second-level target trait) could be conducted earlier in the season based on ranking of lines by PH at 45 DAP (secondary trait). With the advance of high-throughput phenotyping technologies, our proposed two-level indirect selection framework could be valuable for enhancing genetic gain per unit of time when selecting on developmental traits.

摘要

贝叶斯网络能够在不同时间的性状之间连接遗传信息,为构建基因组预测模型提供了强大的概率框架。在这项研究中,我们对 869 个生物质高粱((L.)Moench)品系进行了表型分析,这些品系已经使用 100435 个 SNP 标记进行了基因型分析,用于在种植后 30 至 120 天(DAP)期间进行植物高度(PH)的双周测量,以及在四个环境中进行终季干生物量产量(DBY)。我们评估了五种基因组预测模型:贝叶斯网络(BN)、多效贝叶斯网络(PBN)、动态贝叶斯网络(DBN)、多性状 GBLUP(MTr-GBLUP)和多时间 GBLUP(MTi-GBLUP)模型。在五重交叉验证中,DBY 的预测准确性范围为 0.46(PBN)至 0.49(MTr-GBLUP),PH 的预测准确性范围为 0.47(DBN、DAP120)至 0.75(MTi-GBLUP、DAP60)。前向链接交叉验证进一步提高了 DBN、MTi-GBLUP 和 MTr-GBLUP 模型对 PH 的预测准确性(训练切片:30-45 DAP),相对 BN 和 PBN 模型提高了 36.4-52.4%。目标:生物量,次要:PH)和基于品系的吻合指数(PH 时间序列)表明,在 45 DAP 后,通过 PH 对品系进行的排名变化最小。这些结果表明,在收获时(一级目标性状)和 DBY(二级目标性状)对 PH 进行二级间接选择的方法可以更早地进行,方法是根据 45 DAP 时 PH 的品系排名(二级性状)进行。随着高通量表型技术的进步,我们提出的两级间接选择框架在选择发育性状时,可以提高单位时间内的遗传增益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d91/7003104/0965bbe44053/769f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验