Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan.
Nature. 2023 Aug;620(7975):762-767. doi: 10.1038/s41586-023-06294-z. Epub 2023 Jul 19.
Electronic states in quasicrystals generally preclude a Bloch description, rendering them fascinating and enigmatic. Owing to their complexity and scarcity, quasicrystals are underexplored relative to periodic and amorphous structures. Here we introduce a new type of highly tunable quasicrystal easily assembled from periodic components. By twisting three layers of graphene with two different twist angles, we form two mutually incommensurate moiré patterns. In contrast to many common atomic-scale quasicrystals, the quasiperiodicity in our system is defined on moiré length scales of several nanometres. This 'moiré quasicrystal' allows us to tune the chemical potential and thus the electronic system between a periodic-like regime at low energies and a strongly quasiperiodic regime at higher energies, the latter hosting a large density of weakly dispersing states. Notably, in the quasiperiodic regime, we observe superconductivity near a flavour-symmetry-breaking phase transition, the latter indicative of the important role that electronic interactions play in that regime. The prevalence of interacting phenomena in future systems with in situ tunability is not only useful for the study of quasiperiodic systems but may also provide insights into electronic ordering in related periodic moiré crystals. We anticipate that extending this platform to engineer quasicrystals by varying the number of layers and twist angles, and by using different two-dimensional components, will lead to a new family of quantum materials to investigate the properties of strongly interacting quasicrystals.
准晶中的电子态通常排除了布洛赫描述,这使得它们既迷人又神秘。由于它们的复杂性和稀缺性,与周期性和非晶态结构相比,准晶的研究还不够充分。在这里,我们引入了一种新型的高度可调谐准晶,它可以由周期性成分轻松组装而成。通过扭曲三层具有两个不同扭转角的石墨烯,我们形成了两个相互不调的莫尔图案。与许多常见的原子尺度准晶体不同,我们系统中的准周期性是在几个纳米的莫尔长度尺度上定义的。这种“莫尔准晶体”使我们能够在低能量的周期性类似态和高能量的强准周期性态之间调节化学势和电子系统,后者具有大量弱色散态。值得注意的是,在准周期性态中,我们在一个与手性对称破缺相变相关的区域附近观察到了超导性,这表明电子相互作用在该区域中起着重要作用。未来具有原位可调谐性的系统中相互作用现象的普遍存在不仅对研究准周期系统有用,而且可能为相关周期性莫尔晶体中的电子有序提供见解。我们预计,通过改变层数和扭转角,并使用不同的二维成分,将这个平台扩展到设计准晶体,将产生一类新的量子材料,以研究强相互作用准晶体的性质。