Suppr超能文献

基于后向散射激光形成的散斑图案的样本漂移估计方法。

Sample drift estimation method based on speckle patterns formed by backscattered laser light.

作者信息

Chen Shih-Ya, Heintzmann Rainer, Cremer Christoph

机构信息

Institute of Molecular Biology, Mainz, Germany.

Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Jena, Germany.

出版信息

Biomed Opt Express. 2019 Nov 25;10(12):6462-6475. doi: 10.1364/BOE.10.006462. eCollection 2019 Dec 1.

Abstract

Single molecule localization microscopy (SMLM) has been established to acquire images with unprecedented resolution down to several nanometers. A typical time scale for image acquisition is several minutes to hours. Yet it is difficult to avoid completely sample drift for long time measurements. To estimate drift, we present a method based on the evaluation of speckle patterns formed by backscattered laser light from the cells using a single molecule localization microscope setup. A z-stack of unique speckle patterns is recorded prior to the measurements as a three-dimensional position reference. During the experiment, images of scattered laser light were acquired, and correlated individually with each of the images of the speckle reference stack to estimate x, y and z drift. Our method shows highly comparable results with a fiducial marker approach, achieving a precision of several nanometers. This method allows for high precision three dimensional drift correction of microscope systems without any additional sample preparation.

摘要

单分子定位显微镜(SMLM)已被用于获取分辨率低至几纳米的前所未有的图像。图像采集的典型时间尺度是几分钟到几小时。然而,长时间测量很难完全避免样本漂移。为了估计漂移,我们提出了一种基于使用单分子定位显微镜装置评估细胞反向散射激光形成的散斑图案的方法。在测量之前记录一组独特散斑图案的z轴堆栈作为三维位置参考。在实验过程中,采集散射激光的图像,并将其分别与散斑参考堆栈的每个图像进行关联,以估计x、y和z方向的漂移。我们的方法与基准标记方法显示出高度可比的结果,实现了几纳米的精度。该方法无需任何额外的样品制备,即可对显微镜系统进行高精度的三维漂移校正。

相似文献

1
Sample drift estimation method based on speckle patterns formed by backscattered laser light.
Biomed Opt Express. 2019 Nov 25;10(12):6462-6475. doi: 10.1364/BOE.10.006462. eCollection 2019 Dec 1.
2
3D drift correction for super-resolution imaging with a single laser light.
Opt Lett. 2024 May 15;49(10):2785-2788. doi: 10.1364/OL.519290.
3
High-precision 3D drift correction with differential phase contrast images.
Opt Express. 2021 Oct 11;29(21):34641-34655. doi: 10.1364/OE.438160.
4
Motion screening of fiducial marker for improved localization precision and resolution in SMLM.
Opt Express. 2023 Jul 31;31(16):26764-26776. doi: 10.1364/OE.496761.
5
Active Microscope Stabilization in Three Dimensions Using Image Correlation.
Opt Nanoscopy. 2013 Apr 18;2(1). doi: 10.1186/2192-2853-2-3.
6
New microscopy technique based on position localization of scattering particles.
Opt Express. 2017 May 15;25(10):11530-11549. doi: 10.1364/OE.25.011530.
7
Sub-nanometer drift correction for super-resolution imaging.
Opt Lett. 2014 Oct 1;39(19):5685-8. doi: 10.1364/OL.39.005685.
8
Three dimensional drift control at nano-scale in single molecule localization microscopy.
Opt Express. 2020 Oct 26;28(22):32750-32763. doi: 10.1364/OE.404123.
9
Real-time adaptive drift correction for super-resolution localization microscopy.
Opt Express. 2015 Sep 7;23(18):23887-98. doi: 10.1364/OE.23.023887.
10
Influence of drift correction precision on super-resolution localization microscopy.
Appl Opt. 2022 May 1;61(13):3516-3522. doi: 10.1364/AO.451561.

引用本文的文献

1
Open-source 3D active sample stabilization for fluorescence microscopy.
Biophys Rep (N Y). 2025 Jun 11;5(2):100208. doi: 10.1016/j.bpr.2025.100208. Epub 2025 Apr 18.
2
Single-molecule localization microscopy.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00038-x. Epub 2021 Jun 3.
3
Completing the canvas: advances and challenges for DNA-PAINT super-resolution imaging.
Trends Biochem Sci. 2021 Nov;46(11):918-930. doi: 10.1016/j.tibs.2021.05.010. Epub 2021 Jul 8.

本文引用的文献

2
Thermal nanoimprint lithography for drift correction in super-resolution fluorescence microscopy.
Opt Express. 2018 Jan 22;26(2):1670-1680. doi: 10.1364/OE.26.001670.
3
4
A Simple Marker-Assisted 3D Nanometer Drift Correction Method for Superresolution Microscopy.
Biophys J. 2017 May 23;112(10):2196-2208. doi: 10.1016/j.bpj.2017.04.025.
6
The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments.
FEBS Lett. 2015 Oct 7;589(20 Pt A):2931-43. doi: 10.1016/j.febslet.2015.05.037. Epub 2015 May 28.
7
Drift correction for single-molecule imaging by molecular constraint field, a distance minimum metric.
BMC Biophys. 2015 Jan 13;8(1):1. doi: 10.1186/s13628-014-0015-1. eCollection 2015.
9
ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging.
Bioinformatics. 2014 Aug 15;30(16):2389-90. doi: 10.1093/bioinformatics/btu202. Epub 2014 Apr 25.
10
Active Microscope Stabilization in Three Dimensions Using Image Correlation.
Opt Nanoscopy. 2013 Apr 18;2(1). doi: 10.1186/2192-2853-2-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验