Suppr超能文献

一种用于超分辨率显微镜的简单标记辅助三维纳米漂移校正方法。

A Simple Marker-Assisted 3D Nanometer Drift Correction Method for Superresolution Microscopy.

作者信息

Ma Hongqiang, Xu Jianquan, Jin Jingyi, Huang Yi, Liu Yang

机构信息

Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.

Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; School of Medicine, Tsinghua University, Haidian District, Beijing, China.

出版信息

Biophys J. 2017 May 23;112(10):2196-2208. doi: 10.1016/j.bpj.2017.04.025.

Abstract

High-precision fluorescence microscopy such as superresolution imaging or single-particle tracking often requires an online drift correction method to maintain the stability of the three-dimensional (3D) position of the sample at a nanometer precision throughout the entire data acquisition process. Current online drift correction methods require modification of the existing two-dimensional (2D) fluorescence microscope with additional optics and detectors, which can be cumbersome and limit its use in many biological laboratories. Here we report a simple marker-assisted online drift correction method in which all 3D positions can be derived from fiducial markers on the coverslip of the sample on a standard 2D fluorescence microscope without additional optical components. We validate this method by tracking the long-term 3D stability of single-molecule localization microscopy at a precision of <2 and 5 nm in the lateral and axial dimension, respectively. We then provide three examples to evaluate the performance of the marker-assisted drift correction method. Finally, we give an example of a biological application of superresolution imaging of spatiotemporal alteration for a DNA replication structure with both low-abundance newly synthesized DNAs at the early onset of DNA synthesis and gradually condensed DNA structures during DNA replication. Using an isogenic breast cancer progression cell line model that recapitulates normal-like, precancerous, and tumorigenic stages, we characterize a distinction in the DNA replication process in normal, precancerous, and tumorigenic cells.

摘要

诸如超分辨率成像或单粒子追踪等高精度荧光显微镜技术通常需要一种在线漂移校正方法,以便在整个数据采集过程中,将样品三维(3D)位置的稳定性维持在纳米精度。当前的在线漂移校正方法需要对现有的二维(2D)荧光显微镜进行改造,添加额外的光学器件和探测器,这可能会很麻烦,并限制其在许多生物实验室中的应用。在此,我们报告一种简单的标记辅助在线漂移校正方法,在标准的2D荧光显微镜上,无需额外的光学组件,所有3D位置都可以从样品盖玻片上的基准标记得出。我们通过追踪单分子定位显微镜在横向和轴向维度上分别达到<2纳米和5纳米精度的长期3D稳定性,来验证该方法。然后,我们提供三个例子来评估标记辅助漂移校正方法的性能。最后,我们给出一个生物应用实例,即对DNA复制结构进行超分辨率成像,观察其时空变化,在DNA合成早期既有低丰度的新合成DNA,在DNA复制过程中又有逐渐浓缩的DNA结构。使用一个能重现正常、癌前和致瘤阶段的同基因乳腺癌进展细胞系模型,我们对正常、癌前和致瘤细胞中DNA复制过程的差异进行了表征。

相似文献

1
A Simple Marker-Assisted 3D Nanometer Drift Correction Method for Superresolution Microscopy.
Biophys J. 2017 May 23;112(10):2196-2208. doi: 10.1016/j.bpj.2017.04.025.
2
Sample drift correction in 3D fluorescence photoactivation localization microscopy.
Opt Express. 2011 Aug 1;19(16):15009-19. doi: 10.1364/OE.19.015009.
3
Superresolution fluorescence microscopy for 3D reconstruction of thick samples.
Mol Brain. 2018 Mar 15;11(1):17. doi: 10.1186/s13041-018-0361-z.
4
Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy.
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17480-5. doi: 10.1073/pnas.1412396111. Epub 2014 Nov 24.
5
Three dimensional drift control at nano-scale in single molecule localization microscopy.
Opt Express. 2020 Oct 26;28(22):32750-32763. doi: 10.1364/OE.404123.
6
Dynamic three-dimensional tracking of single fluorescent nanoparticles deep inside living tissue.
Opt Express. 2012 Aug 27;20(18):19697-707. doi: 10.1364/OE.20.019697.
7
9
Thermal nanoimprint lithography for drift correction in super-resolution fluorescence microscopy.
Opt Express. 2018 Jan 22;26(2):1670-1680. doi: 10.1364/OE.26.001670.
10
Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.
Science. 2008 Feb 8;319(5864):810-3. doi: 10.1126/science.1153529. Epub 2008 Jan 3.

引用本文的文献

1
A Versatile Drift-Free Super-Resolution Imaging Method via Oblique Bright-Field Correlation.
Adv Sci (Weinh). 2025 Feb;12(7):e2412127. doi: 10.1002/advs.202412127. Epub 2024 Dec 24.
2
A practical guide to light-sheet microscopy for nanoscale imaging: Looking beyond the cell.
J Appl Phys. 2024 Sep 7;136(9):091101. doi: 10.1063/5.0218262. Epub 2024 Sep 4.
4
Toward drift-free high-throughput nanoscopy through adaptive intersection maximization.
Sci Adv. 2024 May 24;10(21):eadm7765. doi: 10.1126/sciadv.adm7765. Epub 2024 May 23.
5
A new method to experimentally quantify dynamics of initial protein-protein interactions.
Commun Biol. 2024 Mar 12;7(1):311. doi: 10.1038/s42003-024-05914-2.
6
RegiSTORM: channel registration for multi-color stochastic optical reconstruction microscopy.
BMC Bioinformatics. 2023 Jun 5;24(1):237. doi: 10.1186/s12859-023-05320-1.
7
The Amyloid Precursor Protein Modulates the Position and Length of the Axon Initial Segment.
J Neurosci. 2023 Mar 8;43(10):1830-1844. doi: 10.1523/JNEUROSCI.0172-22.2023. Epub 2023 Jan 30.
9
Changes in nuclear pore numbers control nuclear import and stress response of mouse hearts.
Dev Cell. 2022 Oct 24;57(20):2397-2411.e9. doi: 10.1016/j.devcel.2022.09.017.
10
Estimating the localization spread function of static single-molecule localization microscopy images.
Biophys J. 2022 Aug 2;121(15):2906-2920. doi: 10.1016/j.bpj.2022.06.036. Epub 2022 Jul 4.

本文引用的文献

1
Optimal Drift Correction for Superresolution Localization Microscopy with Bayesian Inference.
Biophys J. 2015 Nov 3;109(9):1772-80. doi: 10.1016/j.bpj.2015.09.017.
2
Light-induced cell damage in live-cell super-resolution microscopy.
Sci Rep. 2015 Oct 20;5:15348. doi: 10.1038/srep15348.
3
Real-time adaptive drift correction for super-resolution localization microscopy.
Opt Express. 2015 Sep 7;23(18):23887-98. doi: 10.1364/OE.23.023887.
5
Effects of fixed pattern noise on single molecule localization microscopy.
Phys Chem Chem Phys. 2014 Oct 21;16(39):21586-94. doi: 10.1039/c4cp02280g. Epub 2014 Sep 5.
8
Active Microscope Stabilization in Three Dimensions Using Image Correlation.
Opt Nanoscopy. 2013 Apr 18;2(1). doi: 10.1186/2192-2853-2-3.
9
The lateral and axial localization uncertainty in super-resolution light microscopy.
Chemphyschem. 2014 Mar 17;15(4):664-70. doi: 10.1002/cphc.201300711. Epub 2013 Dec 2.
10
Integrated proteomic and metabolic analysis of breast cancer progression.
PLoS One. 2013 Sep 27;8(9):e76220. doi: 10.1371/journal.pone.0076220. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验