Ma Hongqiang, Xu Jianquan, Jin Jingyi, Huang Yi, Liu Yang
Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.
Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; School of Medicine, Tsinghua University, Haidian District, Beijing, China.
Biophys J. 2017 May 23;112(10):2196-2208. doi: 10.1016/j.bpj.2017.04.025.
High-precision fluorescence microscopy such as superresolution imaging or single-particle tracking often requires an online drift correction method to maintain the stability of the three-dimensional (3D) position of the sample at a nanometer precision throughout the entire data acquisition process. Current online drift correction methods require modification of the existing two-dimensional (2D) fluorescence microscope with additional optics and detectors, which can be cumbersome and limit its use in many biological laboratories. Here we report a simple marker-assisted online drift correction method in which all 3D positions can be derived from fiducial markers on the coverslip of the sample on a standard 2D fluorescence microscope without additional optical components. We validate this method by tracking the long-term 3D stability of single-molecule localization microscopy at a precision of <2 and 5 nm in the lateral and axial dimension, respectively. We then provide three examples to evaluate the performance of the marker-assisted drift correction method. Finally, we give an example of a biological application of superresolution imaging of spatiotemporal alteration for a DNA replication structure with both low-abundance newly synthesized DNAs at the early onset of DNA synthesis and gradually condensed DNA structures during DNA replication. Using an isogenic breast cancer progression cell line model that recapitulates normal-like, precancerous, and tumorigenic stages, we characterize a distinction in the DNA replication process in normal, precancerous, and tumorigenic cells.
诸如超分辨率成像或单粒子追踪等高精度荧光显微镜技术通常需要一种在线漂移校正方法,以便在整个数据采集过程中,将样品三维(3D)位置的稳定性维持在纳米精度。当前的在线漂移校正方法需要对现有的二维(2D)荧光显微镜进行改造,添加额外的光学器件和探测器,这可能会很麻烦,并限制其在许多生物实验室中的应用。在此,我们报告一种简单的标记辅助在线漂移校正方法,在标准的2D荧光显微镜上,无需额外的光学组件,所有3D位置都可以从样品盖玻片上的基准标记得出。我们通过追踪单分子定位显微镜在横向和轴向维度上分别达到<2纳米和5纳米精度的长期3D稳定性,来验证该方法。然后,我们提供三个例子来评估标记辅助漂移校正方法的性能。最后,我们给出一个生物应用实例,即对DNA复制结构进行超分辨率成像,观察其时空变化,在DNA合成早期既有低丰度的新合成DNA,在DNA复制过程中又有逐渐浓缩的DNA结构。使用一个能重现正常、癌前和致瘤阶段的同基因乳腺癌进展细胞系模型,我们对正常、癌前和致瘤细胞中DNA复制过程的差异进行了表征。