Sirazitdinova Ekaterina, Gijs Marlies, Bertens Christian J F, Berendschot Tos T J M, Nuijts Rudy M M A, Deserno Thomas M
Uniklinik RWTH Aachen, Department of Medical Informatics, Aachen, Germany.
University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands.
Transl Vis Sci Technol. 2019 Dec 12;8(6):31. doi: 10.1167/tvst.8.6.31. eCollection 2019 Nov.
To show feasibility of computerized techniques for ocular redness quantification in clinical studies, and to propose an automatic, objective method.
Software for quantification of redness of the bulbar conjunctiva was developed. It provides an interface for manual and automatic sclera segmentation along with automated alignment of region of interest to enable estimation of changes in redness. The software also includes the redness scoring methods: (1) contrast-limited adaptive histogram equalization (CLAHE) in red-green-blue (RGB) color model, (2) product of saturation and hue in hue-saturation-value (HSV), and (3) average of angular sections in HSV. Our validation pipeline compares the scoring outcomes from the perspectives of segmentation reliability, segmentation precision, segmentation automation, and the choice of redness scoring methods.
Ninety-two photographs of eyes before and after provoked redness were evaluated. Redness in manually segmented images was significantly different within human observers (interobserver, = 0.04) and two scoring sessions (intraobserver, < 0.001). Automated segmentation showed the smallest variability, and can therefore be seen as a robust segmentation method. The RGB-based scoring method was less sensitive in redness assessment.
Computation of ocular redness depends heavily on sclera segmentation. Manual segmentation appears to be subjective, resulting in systematic errors in intraobserver and interobserver settings. At the same time, automatic segmentation seems to be consistent. The scoring methods relying on HSV color space appeared to be more consistent.
Computerized quantification of ocular redness holds great promise to objectify ocular redness in the standard clinical care and, in particular, in clinical trials.
展示计算机技术在临床研究中对眼部发红进行量化的可行性,并提出一种自动、客观的方法。
开发了用于量化球结膜发红的软件。它提供了手动和自动巩膜分割的界面,以及感兴趣区域的自动对齐,以估计发红的变化。该软件还包括发红评分方法:(1)红-绿-蓝(RGB)颜色模型中的对比度受限自适应直方图均衡化(CLAHE),(2)色调-饱和度-明度(HSV)中的饱和度与色调乘积,以及(3)HSV中角度区间的平均值。我们的验证流程从分割可靠性、分割精度、分割自动化以及发红评分方法的选择等角度比较评分结果。
对92张诱发发红前后的眼部照片进行了评估。在人类观察者之间(观察者间, = 0.04)以及两次评分过程(观察者内, < 0.001)中,手动分割图像中的发红情况存在显著差异。自动分割显示出最小的变异性,因此可被视为一种稳健的分割方法。基于RGB的评分方法在发红评估中不太敏感。
眼部发红的计算在很大程度上依赖于巩膜分割。手动分割似乎具有主观性,在观察者内和观察者间设置中会导致系统误差。同时,自动分割似乎具有一致性。依赖HSV颜色空间的评分方法似乎更具一致性。
眼部发红的计算机化量化在标准临床护理中,特别是在临床试验中,有望实现眼部发红的客观化。