Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China.
Sci Adv. 2019 Dec 13;5(12):eaay5141. doi: 10.1126/sciadv.aay5141. eCollection 2019 Dec.
One of the motivations for multiferroics research is to find an energy-efficient solution to spintronic applications, such as the solely electrical control of magnetic tunnel junctions. Here, we integrate spintronics and multiferroics by depositing MgO-based magnetic tunnel junctions on ferroelectric substrate. We fabricate two pairs of electrodes on the ferroelectric substrate to generate localized strain by applying voltage. This voltage-generated localized strain has the ability to modify the magnetic anisotropy of the free layer effectively. By sequentially applying voltages to these two pairs of electrodes, we successively and unidirectionally rotate the magnetization of the free layer in the magnetic tunnel junctions to complete reversible 180° magnetization switching. Thus, we accomplish a giant nonvolatile solely electrical switchable high/low resistance in magnetic tunnel junctions at room temperature without the aid of a magnetic field. Our results are important for exploring voltage control of magnetism and low-power spintronic devices.
多铁性研究的动机之一是寻找一种节能的解决方案,用于自旋电子学应用,例如仅通过电来控制磁隧道结。在这里,我们通过在铁电衬底上沉积 MgO 基磁隧道结来整合自旋电子学和多铁性。我们在铁电衬底上制作两对电极,通过施加电压产生局部应变。这种由电压产生的局部应变能够有效地改变自由层的磁各向异性。通过依次对这两对电极施加电压,我们可以依次且单向地旋转磁隧道结中自由层的磁化,从而完成可逆转的 180°磁化切换。因此,我们在室温下无需磁场即可实现巨大的非易失性、仅通过电控制的高/低电阻磁隧道结切换。我们的研究结果对于探索磁场的电压控制和低功耗自旋电子器件具有重要意义。