Maynard Lucy H, Smith Olivia, Tilmans Nicolas P, Tham Eleonore, Hosseinzadeh Shayan, Tan Weilun, Leenay Ryan, May Andrew P, Paulk Nicole K
Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California.
Anagenex, San Francisco, California.
Hum Gene Ther Methods. 2019 Dec;30(6):195-205. doi: 10.1089/hgtb.2019.110.
Adeno-associated viral (AAV) vectors have shown great promise in gene delivery as evidenced by recent FDA approvals. Despite efforts to optimize manufacturing for good manufacturing practice (GMP) productions, few academic laboratories have the resources to assess vector composition. One critical component of vector quality is packaged genome fidelity. Errors in viral genome replication and packaging can result in the incorporation of faulty genomes with mutations, truncations, or rearrangements, compromising vector potency. Thus, sequence validation of packaged genome composition is an important quality control (QC), even in academic settings. We developed Fast-Seq, an end-to-end method for extraction, purification, sequencing, and data analysis of packaged single-stranded AAV (ssAAV) genomes intended for non-GMP preclinical environments. We validated Fast-Seq on ssAAV vectors with three different genome compositions (CAG-GFP, CAG-tdTomato, EF1α-FLuc), three different genome sizes (2.9, 3.6, 4.4 kb), packaged in four different capsid serotypes (AAV1, AAV2, AAV5, and AAV8), and produced using the two most common production methods (Baculovirus- and human HEK293), from both common commercial vendors and academic core facilities supplying academic laboratories. We achieved an average genome coverage of >1,400 × and an average inverted terminal repeat coverage of >280 × , despite the many differences in composition of each ssAAV sample. When compared with other ssAAV next-generation sequencing (NGS) methods for GMP settings, Fast-Seq has several unique advantages: Tn5 transposase-based fragmentation rather than sonication, 125 × less input DNA, simpler adapter ligation, compatibility with commonly available inexpensive sequencing instruments, and free open-source data analysis code in a preassembled customizable Docker container designed for novices. Fast-Seq can be completed in 18 h, is more cost-effective than other NGS methods, and is more accurate than Sanger sequencing, which is generally only applied at 1-2 × sequencing depth. Fast-Seq is a rapid, simple, and inexpensive methodology to validate packaged ssAAV genomes in academic settings.
腺相关病毒(AAV)载体在基因递送方面显示出巨大潜力,最近美国食品药品监督管理局(FDA)的批准就证明了这一点。尽管人们努力优化用于药品生产质量管理规范(GMP)生产的制造工艺,但很少有学术实验室有资源来评估载体组成。载体质量的一个关键组成部分是包装基因组的保真度。病毒基因组复制和包装过程中的错误可能导致含有突变、截短或重排的错误基因组的掺入,从而损害载体效力。因此,即使在学术环境中,包装基因组组成的序列验证也是一项重要的质量控制(QC)措施。我们开发了Fast-Seq,这是一种用于非GMP临床前环境中包装的单链AAV(ssAAV)基因组的提取、纯化、测序和数据分析的端到端方法。我们在具有三种不同基因组组成(CAG-GFP、CAG-tdTomato、EF1α-FLuc)、三种不同基因组大小(2.9、3.6、4.4 kb)、包装在四种不同衣壳血清型(AAV1、AAV2、AAV5和AAV8)中的ssAAV载体上验证了Fast-Seq,并使用两种最常见的生产方法(杆状病毒和人HEK293),从供应学术实验室的常见商业供应商和学术核心设施中生产这些载体。尽管每个ssAAV样品的组成存在许多差异,但我们实现了平均基因组覆盖率>1400×,平均反向末端重复序列覆盖率>280×。与其他用于GMP设置的ssAAV下一代测序(NGS)方法相比,Fast-Seq具有几个独特的优势:基于Tn5转座酶的片段化而非超声处理,所需输入DNA少125倍,衔接子连接更简单,与常用的廉价测序仪器兼容,以及在为新手设计的预组装可定制Docker容器中有免费的开源数据分析代码。Fast-Seq可以在18小时内完成,比其他NGS方法更具成本效益,并且比通常仅应用于1-2×测序深度的桑格测序更准确。Fast-Seq是一种在学术环境中验证包装的ssAAV基因组的快速、简单且廉价的方法。