Sannomiya Takumi, Konečná Andrea, Matsukata Taeko, Thollar Zac, Okamoto Takayuki, García de Abajo F Javier, Yamamoto Naoki
Department of Materials Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta , Midoriku, Yokohama 226-8503 , Japan.
PRESTO , 4259 Nagatsuta , Midoriku, Yokohama 226-8503 , Japan.
Nano Lett. 2020 Jan 8;20(1):592-598. doi: 10.1021/acs.nanolett.9b04335. Epub 2019 Dec 24.
Nanoscale gaps between metals can strongly confine electromagnetic fields that enable efficient electromagnetic energy conversion and coupling to nanophotonic structures. In particular, the gap formed by depositing a metallic particle on a metallic substrate produces coupling of localized particle plasmons to propagating surface plasmon polaritons (SPPs). Understanding and controlling the phase of such coupling is essential for the design of devices relying on nanoparticles coupled through SPPs. Here we demonstrate the experimental visualization of the phase associated with the plasmonic field of metallic particle-surface composites through nanoscopically and spectroscopically resolved cathodoluminescence using a scanning transmission electron microscope. Specifically, we study the interference between the substrate transition radiation and the field resulting from out-coupling of SPP excitation, therefore giving rise to angle-, polarization-, and energy-dependent photon emission fringe patterns from which we extract phase information. Our methods should be readily applicable to more complex nanostructures, thus providing direct experimental insight into nanoplasmonic near-fields with potential applications in improving plasmon-based devices.
金属之间的纳米级间隙能够强烈地限制电磁场,从而实现高效的电磁能量转换以及与纳米光子结构的耦合。特别地,通过在金属基底上沉积金属颗粒形成的间隙会产生局域粒子等离子体激元与传播表面等离子体激元极化激元(SPP)的耦合。理解并控制这种耦合的相位对于依赖通过SPP耦合的纳米颗粒的器件设计至关重要。在此,我们通过使用扫描透射电子显微镜进行纳米级和光谱分辨的阴极发光,展示了与金属颗粒 - 表面复合材料的等离子体激元场相关的相位的实验可视化。具体而言,我们研究了基底过渡辐射与SPP激发外耦合产生的场之间的干涉,从而产生了角度、偏振和能量相关的光子发射条纹图案,从中我们提取相位信息。我们的方法应该很容易应用于更复杂的纳米结构,从而为纳米等离子体近场提供直接的实验见解,并在改进基于等离子体激元的器件方面具有潜在应用。