Tian Yi, Hu Haifeng, Chen Peipei, Dong Fengliang, Huang Hui, Xu Lihua, Yan Lanqin, Song Zhiwei, Xu Taoran, Chu Weiguo
Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, CAS Key Laboratory for Nanosystems and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
Adv Sci (Weinh). 2022 May;9(15):e2200647. doi: 10.1002/advs.202200647. Epub 2022 Mar 24.
As an indispensable constituent of plasmonic materials/dielectrics for surface enhanced Raman scattering (SERS) effects, dielectrics play a key role in excitation and transmission of surface plasmons which however remain more elusive relative to plasmonic materials. Herein, different roles of vertical dielectric walls, and horizontal and vertical dielectric layers in SERS via 3D periodic plasmonic materials/dielectrics structures are studied. Surface plasmon polariton (SPP) interferences can be maximized within dielectric walls besieged by plasmonic layers at the wall thicknesses of integral multiple half-SPP -wavelength which effectively excites localized surface plasmon resonance to improve SERS effects by one order of magnitude compared to roughness and/or nanogaps only. The introduction of extra Au nanoparticles on thin dielectric layers can further enhance SERS effects only slightly. Thus, the designed Au/SiO based SERS chips show an enhancement factor of 8.9 × 10 , 265 times higher relative to the chips with far thinner SiO walls. As many as 1200 chips are batch fabricated for a 4 in wafer using cost-effective nanoimprint lithography which can detect trace Hg ions as low as 1 ppt. This study demonstrates a complete generalized platform from design to low-cost batch-fabrication to applications for novel high performance SERS chips of any plasmonic materials/dielectrics.
作为用于表面增强拉曼散射(SERS)效应的等离子体材料/电介质的不可或缺的组成部分,电介质在表面等离子体激元的激发和传输中起着关键作用,然而相对于等离子体材料而言,其仍然更难以捉摸。在此,研究了垂直电介质壁以及水平和垂直电介质层在通过三维周期性等离子体材料/电介质结构实现的SERS中的不同作用。在由等离子体层包围的电介质壁内,当壁厚度为整数倍的半表面等离子体激元极化子(SPP)波长时,表面等离子体激元极化子(SPP)干涉可以最大化,这有效地激发了局域表面等离子体共振,与仅靠粗糙度和/或纳米间隙相比,可将SERS效应提高一个数量级。在薄电介质层上引入额外的金纳米颗粒仅能略微进一步增强SERS效应。因此,所设计的基于金/二氧化硅的SERS芯片显示出8.9×10 的增强因子,相对于具有更薄二氧化硅壁的芯片高出265倍。使用具有成本效益的纳米压印光刻技术,在4英寸晶圆上批量制造了多达1200个芯片,这些芯片能够检测低至1 ppt的痕量汞离子。这项研究展示了一个完整的通用平台,从设计到低成本批量制造,再到用于任何等离子体材料/电介质的新型高性能SERS芯片的应用。