文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

无基因型信息的Pooled 单细胞 RNA-seq 数据拆分。

Genotype-free demultiplexing of pooled single-cell RNA-seq.

机构信息

Genome Innovation Hub, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia.

Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia.

出版信息

Genome Biol. 2019 Dec 19;20(1):290. doi: 10.1186/s13059-019-1852-7.


DOI:10.1186/s13059-019-1852-7
PMID:31856883
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6921391/
Abstract

A variety of methods have been developed to demultiplex pooled samples in a single cell RNA sequencing (scRNA-seq) experiment which either require hashtag barcodes or sample genotypes prior to pooling. We introduce scSplit which utilizes genetic differences inferred from scRNA-seq data alone to demultiplex pooled samples. scSplit also enables mapping clusters to original samples. Using simulated, merged, and pooled multi-individual datasets, we show that scSplit prediction is highly concordant with demuxlet predictions and is highly consistent with the known truth in cell-hashing dataset. scSplit is ideally suited to samples without external genotype information and is available at: https://github.com/jon-xu/scSplit.

摘要

已经开发了多种方法来对单细胞 RNA 测序 (scRNA-seq) 实验中的混合样本进行解复用,这些方法要么在混合前需要标签条形码,要么需要样本基因型。我们引入了 scSplit,它利用仅从 scRNA-seq 数据推断出的遗传差异来对混合样本进行解复用。scSplit 还可以将聚类映射到原始样本。使用模拟的、合并的和混合的多个体数据集,我们表明 scSplit 的预测与 demuxlet 的预测高度一致,并且与细胞哈希数据集的已知事实高度一致。scSplit 非常适合没有外部基因型信息的样本,可在以下网址获取:https://github.com/jon-xu/scSplit。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce5/6921391/59055c5723e3/13059_2019_1852_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce5/6921391/c0d56889e112/13059_2019_1852_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce5/6921391/c5ab0e8ff560/13059_2019_1852_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce5/6921391/002940b7e708/13059_2019_1852_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce5/6921391/59055c5723e3/13059_2019_1852_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce5/6921391/c0d56889e112/13059_2019_1852_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce5/6921391/c5ab0e8ff560/13059_2019_1852_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce5/6921391/002940b7e708/13059_2019_1852_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce5/6921391/59055c5723e3/13059_2019_1852_Fig4_HTML.jpg

相似文献

[1]
Genotype-free demultiplexing of pooled single-cell RNA-seq.

Genome Biol. 2019-12-19

[2]
deMULTIplex2: robust sample demultiplexing for scRNA-seq.

Genome Biol. 2024-1-30

[3]
A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.

PLoS Comput Biol. 2018-4-9

[4]
A hybrid demultiplexing strategy that improves performance and robustness of cell hashing.

Brief Bioinform. 2024-5-23

[5]
Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference.

Genome Biol. 2019-12-13

[6]
GMM-Demux: sample demultiplexing, multiplet detection, experiment planning, and novel cell-type verification in single cell sequencing.

Genome Biol. 2020-7-30

[7]
scReQTL: an approach to correlate SNVs to gene expression from individual scRNA-seq datasets.

BMC Genomics. 2021-1-8

[8]
Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE.

Genome Biol. 2023-4-6

[9]
FBA: feature barcoding analysis for single cell RNA-Seq.

Bioinformatics. 2021-11-18

[10]
Comparative analysis of antibody- and lipid-based multiplexing methods for single-cell RNA-seq.

Genome Biol. 2022-2-16

引用本文的文献

[1]
Benchmarking of computational demultiplexing methods for single-nucleus RNA sequencing data.

Brief Bioinform. 2025-7-2

[2]
Ensemblex: an accuracy-weighted ensemble genetic demultiplexing framework for population-scale scRNAseq sample pooling.

Genome Biol. 2025-7-3

[3]
SNACS: a tool for demultiplexing single-cell DNA sequencing data.

Bioinformatics. 2025-6-2

[4]
CellBouncer, A Unified Toolkit for Single-Cell Demultiplexing and Ambient RNA Analysis, Reveals Hominid Mitochondrial Incompatibilities.

bioRxiv. 2025-3-23

[5]
Single-cell RNA-seq data have prevalent blood contamination but can be rescued by Originator, a computational tool separating single-cell RNA-seq by genetic and contextual information.

Genome Biol. 2025-3-11

[6]
The impact of ambient contamination on demultiplexing methods for single-nucleus multiome experiments.

Res Sq. 2025-2-10

[7]
The impact of ambient contamination on demultiplexing methods for single-nucleus multiome experiments.

bioRxiv. 2025-2-8

[8]
Recovery of biological signals lost in single-cell batch integration with CellANOVA.

Nat Biotechnol. 2024-11-26

[9]
Multiplexed multimodal single-cell technologies: From observation to perturbation analysis.

Mol Cells. 2024-12

[10]
MitoSort: Robust Demultiplexing of Pooled Single-cell Genomic Data Using Endogenous Mitochondrial Variants.

Genomics Proteomics Bioinformatics. 2024-12-3

本文引用的文献

[1]
Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data.

Cell Syst. 2019-4-3

[2]
DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors.

Cell Syst. 2019-4-3

[3]
Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics.

Genome Biol. 2018-12-19

[4]
Dimensionality reduction for visualizing single-cell data using UMAP.

Nat Biotechnol. 2018-12-3

[5]
Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA-Seq Systems.

Mol Cell. 2018-11-21

[6]
Multiplexed droplet single-cell RNA-sequencing using natural genetic variation.

Nat Biotechnol. 2017-12-11

[7]
Simultaneous epitope and transcriptome measurement in single cells.

Nat Methods. 2017-9

[8]
Massively parallel digital transcriptional profiling of single cells.

Nat Commun. 2017-1-16

[9]
The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data.

Nucleic Acids Res. 2017-1-4

[10]
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.

Cell. 2015-5-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索