Biomedical Engineering Group, Department of Electronics, University of Alcala, 28801 Alcala de Henares, Spain.
School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia.
Sensors (Basel). 2019 Dec 18;20(1):7. doi: 10.3390/s20010007.
As multiple sclerosis (MS) usually affects the visual pathway, visual electrophysiological tests can be used to diagnose it. The objective of this paper is to research methods for processing multifocal electroretinogram (mfERG) recordings to improve the capacity to diagnose MS. MfERG recordings from 15 early-stage MS patients without a history of optic neuritis and from 6 control subjects were examined. A normative database was built from the control subject signals. The mfERG recordings were filtered using empirical mode decomposition (EMD). The correlation with the signals in a normative database was used as the classification feature. Using EMD-based filtering and performance correlation, the mean area under the curve (AUC) value was 0.90. The greatest discriminant capacity was obtained in ring 4 and in the inferior nasal quadrant (AUC values of 0.96 and 0.94, respectively). Our results suggest that the combination of filtering mfERG recordings using EMD and calculating the correlation with a normative database would make mfERG waveform analysis applicable to assessment of multiple sclerosis in early-stage patients.
由于多发性硬化症(MS)通常会影响视觉通路,因此可以使用视觉电生理测试来诊断它。本文的目的是研究处理多焦视网膜电图(mfERG)记录的方法,以提高诊断 MS 的能力。检查了 15 名早期 MS 患者(无视神经炎病史)和 6 名对照受试者的 mfERG 记录。从对照受试者的信号中建立了规范数据库。使用经验模态分解(EMD)对 mfERG 记录进行滤波。将与规范数据库中的信号的相关性用作分类特征。使用基于 EMD 的滤波和性能相关性,曲线下面积(AUC)的平均值为 0.90。在环 4 和下鼻象限中获得了最大的判别能力(AUC 值分别为 0.96 和 0.94)。我们的结果表明,使用 EMD 对 mfERG 记录进行滤波并计算与规范数据库的相关性的组合将使 mfERG 波形分析适用于评估早期多发性硬化症患者。