Suppr超能文献

在多焦点电生理记录中识别聚类以最大化判别能力(患者与对照受试者)。

Identification of clusters in multifocal electrophysiology recordings to maximize discriminant capacity (patients vs. control subjects).

作者信息

Del Castillo M Ortiz, Cordón B, Sánchez Morla E M, Vilades E, Rodrigo M J, Cavaliere C, Boquete L, Garcia-Martin E

机构信息

Biomedical Engineering Group, Electronics Department, University of Alcalá, Alcalá de Henares, Spain.

School of Physics, University of Melbourne, Melbourne, VIC, 3010, Australia.

出版信息

Doc Ophthalmol. 2020 Feb;140(1):43-53. doi: 10.1007/s10633-019-09720-8. Epub 2019 Sep 19.

Abstract

PURPOSE

To propose a new method of identifying clusters in multifocal electrophysiology (multifocal electroretinogram: mfERG; multifocal visual-evoked potential: mfVEP) that conserve the maximum capacity to discriminate between patients and control subjects.

METHODS

The theoretical framework proposed creates arbitrary N-size clusters of sectors. The capacity to discriminate between patients and control subjects is assessed by analysing the area under the receiver operator characteristic curve (AUC). As proof of concept, the method is validated using mfERG recordings taken from both eyes of control subjects (n = 6) and from patients with multiple sclerosis (n = 15).

RESULTS

Considering the amplitude of wave P1 as the analysis parameter, the maximum value of AUC = 0.7042 is obtained with N = 9 sectors. Taking into account the AUC of the amplitudes and latencies of waves N1 and P1, the maximum value of the AUC = 0.6917 with N = 8 clustered sectors. The greatest discriminant capacity is obtained by analysing the latency of wave P1: AUC = 0.8854 with a cluster of N = 12 sectors.

CONCLUSION

This paper demonstrates the effectiveness of a method able to determine the arbitrary clustering of multifocal responses that possesses the greatest capacity to discriminate between control subjects and patients when applied to the visual field of mfERG or mfVEP recordings. The method may prove helpful in diagnosing any disease that is identifiable in patients' mfERG or mfVEP recordings and is extensible to other clinical tests, such as optical coherence tomography.

摘要

目的

提出一种在多焦电生理学(多焦视网膜电图:mfERG;多焦视觉诱发电位:mfVEP)中识别聚类的新方法,该方法保留区分患者和对照受试者的最大能力。

方法

所提出的理论框架创建任意N大小的扇区聚类。通过分析接受者操作特征曲线(AUC)下的面积来评估区分患者和对照受试者的能力。作为概念验证,使用从对照受试者(n = 6)双眼和多发性硬化症患者(n = 15)双眼获取的mfERG记录对该方法进行验证。

结果

将波P1的振幅作为分析参数,当N = 9个扇区时,AUC的最大值为0.7042。考虑波N1和P1的振幅和潜伏期的AUC,当N = 8个聚类扇区时,AUC的最大值为0.6917。通过分析波P1的潜伏期获得最大判别能力:当聚类为N = 12个扇区时,AUC = 0.8854。

结论

本文证明了一种能够确定多焦反应任意聚类的方法的有效性,该方法在应用于mfERG或mfVEP记录的视野时具有区分对照受试者和患者的最大能力。该方法可能有助于诊断在患者的mfERG或mfVEP记录中可识别的任何疾病,并且可扩展到其他临床测试,如光学相干断层扫描。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验