Baur Florentin, Nietzer Sarah L, Kunz Meik, Saal Fabian, Jeromin Julian, Matschos Stephanie, Linnebacher Michael, Walles Heike, Dandekar Thomas, Dandekar Gudrun
Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Röntgenring 11, 97070 Würzburg, Germany.
Cancers (Basel). 2019 Dec 20;12(1):28. doi: 10.3390/cancers12010028.
To improve and focus preclinical testing, we combine tumor models based on a decellularized tissue matrix with bioinformatics to stratify tumors according to stage-specific mutations that are linked to central cancer pathways. We generated tissue models with -mutant colorectal cancer (CRC) cells (HROC24 and HROC87) and compared treatment responses to two-dimensional (2D) cultures and xenografts. As the BRAF inhibitor vemurafenib is-in contrast to melanoma-not effective in CRC, we combined it with the EGFR inhibitor gefitinib. In general, our 3D models showed higher chemoresistance and in contrast to 2D a more active HGFR after gefitinib and combination-therapy. In xenograft models murine HGF could not activate the human HGFR, stressing the importance of the human microenvironment. In order to stratify patient groups for targeted treatment options in CRC, an in silico topology with different stages including mutations and changes in common signaling pathways was developed. We applied the established topology for in silico simulations to predict new therapeutic options for BRAF-mutated CRC patients in advanced stages. Our in silico tool connects genome information with a deeper understanding of tumor engines in clinically relevant signaling networks which goes beyond the consideration of single drivers to improve CRC patient stratification.
为了改进和聚焦临床前测试,我们将基于脱细胞组织基质的肿瘤模型与生物信息学相结合,根据与癌症核心通路相关的阶段特异性突变对肿瘤进行分层。我们用 - 突变型结直肠癌(CRC)细胞(HROC24和HROC87)生成了组织模型,并比较了对二维(2D)培养物和异种移植的治疗反应。由于BRAF抑制剂维莫非尼与黑色素瘤不同,对CRC无效,我们将其与EGFR抑制剂吉非替尼联合使用。总体而言,我们的3D模型显示出更高的化学抗性,并且与2D模型相比,在吉非替尼和联合治疗后HGFR更活跃。在异种移植模型中,小鼠HGF无法激活人HGFR,这突出了人微环境的重要性。为了对CRC患者群体进行靶向治疗方案分层,我们开发了一种包含不同阶段(包括常见信号通路中的突变和变化)的计算机拓扑结构。我们将已建立的拓扑结构应用于计算机模拟,以预测晚期BRAF突变CRC患者的新治疗方案。我们的计算机工具将基因组信息与对临床相关信号网络中肿瘤驱动因素的更深入理解联系起来,这超越了对单一驱动因素的考虑,以改善CRC患者分层。