Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; David Rockefeller Graduate Program, Rockefeller University, New York, NY 10065, USA.
Neuron. 2020 Feb 19;105(4):678-687.e5. doi: 10.1016/j.neuron.2019.11.020. Epub 2019 Dec 17.
The brain is a vulnerable metabolic organ and must adapt to different fuel conditions to sustain function. Nerve terminals are a locus of this vulnerability, but how they regulate ATP synthesis as fuel conditions vary is unknown. We show that synapses can switch from glycolytic to oxidative metabolism, but to do so, they rely on activity-driven presynaptic mitochondrial Ca uptake to accelerate ATP production. We demonstrate that, whereas mitochondrial Ca uptake requires elevated extramitochondrial Ca in non-neuronal cells, axonal mitochondria readily take up Ca in response to small changes in external Ca. We identified the brain-specific protein MICU3 as a critical driver of this tuning of Ca sensitivity. Ablation of MICU3 renders axonal mitochondria similar to non-neuronal mitochondria, prevents acceleration of local ATP synthesis, and impairs presynaptic function under oxidative conditions. Thus, presynaptic mitochondria rely on MICU3 to facilitate mitochondrial Ca uptake during activity and achieve metabolic flexibility.
大脑是一个脆弱的代谢器官,必须适应不同的燃料条件以维持功能。神经末梢是这种脆弱性的一个部位,但它们如何在燃料条件变化时调节 ATP 合成尚不清楚。我们表明,突触可以从糖酵解切换到氧化代谢,但要做到这一点,它们依赖于活性驱动的突触前线粒体 Ca 摄取来加速 ATP 产生。我们证明,虽然线粒体 Ca 摄取在非神经元细胞中需要升高的细胞外 Ca,但轴突线粒体很容易响应外部 Ca 的微小变化摄取 Ca。我们确定大脑特异性蛋白 MICU3 是这种 Ca 敏感性调节的关键驱动因素。MICU3 的缺失使轴突线粒体类似于非神经元线粒体,阻止了局部 ATP 合成的加速,并在氧化条件下损害了突触前功能。因此,突触前线粒体依赖 MICU3 在活动期间促进线粒体 Ca 摄取,并实现代谢灵活性。