Suppr超能文献

一种用于生成原核生物多菌株基因组规模代谢模型的工作流程。

A workflow for generating multi-strain genome-scale metabolic models of prokaryotes.

机构信息

Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.

Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.

出版信息

Nat Protoc. 2020 Jan;15(1):1-14. doi: 10.1038/s41596-019-0254-3. Epub 2019 Dec 20.

Abstract

Genome-scale models (GEMs) of bacterial strains' metabolism have been formulated and used over the past 20 years. Recently, with the number of genome sequences exponentially increasing, multi-strain GEMs have proved valuable to define the properties of a species. Here, through four major stages, we extend the original Protocol used to generate a GEM for a single strain to enable multi-strain GEMs: (i) obtain or generate a high-quality model of a reference strain; (ii) compare the genome sequence between a reference strain and target strains to generate a homology matrix; (iii) generate draft strain-specific models from the homology matrix; and (iv) manually curate draft models. These multi-strain GEMs can be used to study pan-metabolic capabilities and strain-specific differences across a species, thus providing insights into its range of lifestyles. Unlike the original Protocol, this procedure is scalable and can be partly automated with the Supplementary Jupyter notebook Tutorial. This Protocol Extension joins the ranks of other comparable methods for generating models such as CarveMe and KBase. This extension of the original Protocol takes on the order of weeks to multiple months to complete depending on the availability of a suitable reference model.

摘要

在过去的 20 年里,人们已经构建并使用了细菌株代谢的基因组规模模型 (GEM)。最近,随着基因组序列数量呈指数级增长,多菌株 GEM 已被证明对定义物种特性很有价值。在这里,我们通过四个主要阶段,将用于生成单菌株 GEM 的原始方案扩展到能够生成多菌株 GEM:(i) 获取或生成参考菌株的高质量模型;(ii) 比较参考菌株和目标菌株之间的基因组序列,生成同源矩阵;(iii) 从同源矩阵生成菌株特异性模型草案;和 (iv) 手动编辑模型草案。这些多菌株 GEM 可用于研究跨物种的泛代谢能力和菌株特异性差异,从而深入了解其生活方式的范围。与原始方案不同,该过程具有可扩展性,并且可以使用补充的 Jupyter 笔记本教程部分自动化。该方案扩展与其他用于生成模型的可比方法(如 CarveMe 和 KBase)一起加入。该原始方案的扩展需要数周到数月的时间才能完成,具体取决于是否有合适的参考模型。

相似文献

1
A workflow for generating multi-strain genome-scale metabolic models of prokaryotes.
Nat Protoc. 2020 Jan;15(1):1-14. doi: 10.1038/s41596-019-0254-3. Epub 2019 Dec 20.
2
A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies.
BMC Bioinformatics. 2016 Jun 30;17(1):260. doi: 10.1186/s12859-016-1142-2.
3
Using KBase to Assemble and Annotate Prokaryotic Genomes.
Curr Protoc Microbiol. 2017 Aug 11;46:1E.13.1-1E.13.18. doi: 10.1002/cpmc.37.
4
Reconstruction and Analysis of Central Metabolism in Microbes.
Methods Mol Biol. 2018;1716:111-129. doi: 10.1007/978-1-4939-7528-0_5.
5
kb_DRAM: annotation and metabolic profiling of genomes with DRAM in KBase.
Bioinformatics. 2023 Apr 3;39(4). doi: 10.1093/bioinformatics/btad110.
6
Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models.
PLoS Comput Biol. 2014 Oct 16;10(10):e1003882. doi: 10.1371/journal.pcbi.1003882. eCollection 2014 Oct.
7
A Pan-Draft Metabolic Model Reflects Evolutionary Diversity across 332 Yeast Species.
Biomolecules. 2022 Nov 3;12(11):1632. doi: 10.3390/biom12111632.
8
Genome-scale metabolic models: reconstruction and analysis.
Methods Mol Biol. 2012;799:107-26. doi: 10.1007/978-1-61779-346-2_7.
9
A workflow for annotating the knowledge gaps in metabolic reconstructions using known and hypothetical reactions.
Proc Natl Acad Sci U S A. 2022 Nov 16;119(46):e2211197119. doi: 10.1073/pnas.2211197119. Epub 2022 Nov 7.
10
Pangenome reconstruction of metabolism predicts species-specific metabolic traits.
mSystems. 2024 Jul 23;9(7):e0015624. doi: 10.1128/msystems.00156-24. Epub 2024 Jun 26.

引用本文的文献

3
Pan-genome-scale metabolic modeling of reveals functionally distinct groups.
mSystems. 2024 Nov 19;9(11):e0092324. doi: 10.1128/msystems.00923-24. Epub 2024 Oct 4.
4
Interspecies synergistic interactions mediated by cofactor exchange enhance stress tolerance by inducing biofilm formation.
mSystems. 2024 Sep 17;9(9):e0088424. doi: 10.1128/msystems.00884-24. Epub 2024 Aug 27.
5
Refining microbial community metabolic models derived from metagenomics using reference-based taxonomic profiling.
mSystems. 2024 Sep 17;9(9):e0074624. doi: 10.1128/msystems.00746-24. Epub 2024 Aug 13.
7
Pangenome reconstruction of metabolism predicts species-specific metabolic traits.
mSystems. 2024 Jul 23;9(7):e0015624. doi: 10.1128/msystems.00156-24. Epub 2024 Jun 26.
8
Using metabolic networks to predict cross-feeding and competition interactions between microorganisms.
Microbiol Spectr. 2024 May 2;12(5):e0228723. doi: 10.1128/spectrum.02287-23. Epub 2024 Mar 20.
9
CRISPR-aided genome engineering for secondary metabolite biosynthesis in Streptomyces.
J Ind Microbiol Biotechnol. 2024 Jan 9;51. doi: 10.1093/jimb/kuae009.
10
A validated pangenome-scale metabolic model for the species complex.
Microb Genom. 2024 Feb;10(2). doi: 10.1099/mgen.0.001206.

本文引用的文献

1
BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data.
PLoS Comput Biol. 2019 Apr 22;15(4):e1006971. doi: 10.1371/journal.pcbi.1006971. eCollection 2019 Apr.
2
Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0.
Nat Protoc. 2019 Mar;14(3):639-702. doi: 10.1038/s41596-018-0098-2.
3
Metagenomics-Based, Strain-Level Analysis of From a Time-Series of Microbiome Samples From a Crohn's Disease Patient.
Front Microbiol. 2018 Oct 30;9:2559. doi: 10.3389/fmicb.2018.02559. eCollection 2018.
5
How accurate is automated gap filling of metabolic models?
BMC Syst Biol. 2018 Jun 19;12(1):73. doi: 10.1186/s12918-018-0593-7.
7
iCN718, an Updated and Improved Genome-Scale Metabolic Network Reconstruction of AYE.
Front Genet. 2018 Apr 10;9:121. doi: 10.3389/fgene.2018.00121. eCollection 2018.
8
Ten steps to get started in Genome Assembly and Annotation.
F1000Res. 2018 Feb 5;7. doi: 10.12688/f1000research.13598.1. eCollection 2018.
9
Advances in gap-filling genome-scale metabolic models and model-driven experiments lead to novel metabolic discoveries.
Curr Opin Biotechnol. 2018 Jun;51:103-108. doi: 10.1016/j.copbio.2017.12.012. Epub 2017 Dec 23.
10
DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication.
Bioinformatics. 2018 Mar 15;34(6):1037-1039. doi: 10.1093/bioinformatics/btx713.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验