Suppr超能文献

BOFdat:从实验数据生成基因组尺度代谢模型的生物质目标函数。

BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data.

机构信息

Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.

出版信息

PLoS Comput Biol. 2019 Apr 22;15(4):e1006971. doi: 10.1371/journal.pcbi.1006971. eCollection 2019 Apr.

Abstract

Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).

摘要

基因组规模代谢模型(GEMs)是代谢的数学结构知识库,可从基因组信息中提供表型预测。GEM 指导的生长表型预测依赖于准确定义生物质目标函数(BOF),该函数旨在包括关键细胞生物质成分,如主要大分子(DNA、RNA、蛋白质)、脂质、辅酶、无机离子和特定物种的成分。尽管它很重要,但目前没有标准化的计算平台可用于以数据驱动、无偏的方式生成特定于物种的生物质目标函数。为了填补代谢建模软件生态系统中的这一空白,我们实现了 BOFdat,这是一个用于根据实验数据定义生物质目标函数的 Python 包。BOFdat 具有模块化实现,将 BOF 定义过程分为三个独立的模块,这里定义为步骤:1)计算主要大分子的系数,2)识别辅酶和无机离子并估计其计量系数,3)以无偏的方式从实验数据中自动提取其余特定于物种的代谢生物质前体。我们使用 BOFdat 重建了大肠杆菌模型 iML1515 的 BOF,这是该领域的黄金标准。与其他方法相比,BOFdat 生成的 BOF 在生物质组成、生长速率和基因必需性预测准确性方面最为一致。BOFdat 的安装说明可在文档中找到,源代码可在 GitHub 上获得(https://github.com/jclachance/BOFdat)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/6497307/26368a468fd4/pcbi.1006971.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验