Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
Nucleic Acids Res. 2020 Feb 28;48(4):1954-1968. doi: 10.1093/nar/gkz1183.
In Saccharomyces cerevisiae, most ribosomal proteins are synthesized from duplicated genes, increasing the potential for ribosome heterogeneity. However, the contribution of these duplicated genes to ribosome production and the mechanism determining their relative expression remain unclear. Here we demonstrate that in most cases, one of the two gene copies generate the bulk of the active ribosomes under normal growth conditions, while the other copy is favored only under stress. To understand the origin of these differences in paralog expression and their contribution to ribosome heterogeneity we used RNA polymerase II ChIP-Seq, RNA-seq, polyribosome association and peptide-based mass-spectrometry to compare their transcription potential, splicing, mRNA abundance, translation potential, protein abundance and incorporation into ribosomes. In normal conditions a post-transcriptional expression hierarchy of the duplicated ribosomal protein genes is the product of the efficient splicing, high stability and efficient translation of the major paralog mRNA. Exposure of the cell to stress modifies the expression ratio of the paralogs by repressing the expression of the major paralog and thus increasing the number of ribosomes carrying the minor paralog. Together the data indicate that duplicated ribosomal protein genes underlie a modular network permitting the modification of ribosome composition in response to changing growth conditions.
在酿酒酵母中,大多数核糖体蛋白由重复基因合成,这增加了核糖体异质性的潜力。然而,这些重复基因对核糖体产生的贡献以及决定它们相对表达的机制仍不清楚。在这里,我们证明在大多数情况下,两个基因拷贝中的一个在正常生长条件下产生大量的活性核糖体,而另一个拷贝仅在应激条件下才是有利的。为了了解这些基因表达差异的起源及其对核糖体异质性的贡献,我们使用 RNA 聚合酶 II ChIP-Seq、RNA-seq、多核糖体关联和基于肽的质谱分析来比较它们的转录潜力、剪接、mRNA 丰度、翻译潜力、蛋白质丰度和掺入核糖体。在正常条件下,重复核糖体蛋白基因的转录后表达层次结构是主要旁系同源物 mRNA 高效剪接、高稳定性和高效翻译的产物。细胞暴露于应激条件下会通过抑制主要旁系同源物的表达来改变旁系同源物的表达比例,从而增加携带次要旁系同源物的核糖体数量。这些数据表明,重复核糖体蛋白基因是一个模块化网络的基础,允许根据生长条件的变化来修饰核糖体组成。