Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain.
Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain.
RNA. 2020 Oct;26(10):1360-1379. doi: 10.1261/rna.075507.120. Epub 2020 Jun 5.
Understanding the functional connection that occurs for the three nuclear RNA polymerases to synthesize ribosome components during the ribosome biogenesis process has been the focal point of extensive research. To preserve correct homeostasis on the production of ribosomal components, cells might require the existence of proteins that target a common subunit of these RNA polymerases to impact their respective activities. This work describes how the yeast prefoldin-like Bud27 protein, which physically interacts with the Rpb5 common subunit of the three RNA polymerases, is able to modulate the transcription mediated by the RNA polymerase I, likely by influencing transcription elongation, the transcription of the RNA polymerase III, and the processing of ribosomal RNA. Bud27 also regulates both RNA polymerase II-dependent transcription of ribosomal proteins and ribosome biogenesis regulon genes, likely by occupying their DNA ORFs, and the processing of the corresponding mRNAs. With RNA polymerase II, this association occurs in a transcription rate-dependent manner. Our data also indicate that Bud27 inactivation alters the phosphorylation kinetics of ribosomal protein S6, a readout of TORC1 activity. We conclude that Bud27 impacts the homeostasis of the ribosome biogenesis process by regulating the activity of the three RNA polymerases and, in this way, the synthesis of ribosomal components. This quite likely occurs through a functional connection of Bud27 with the TOR signaling pathway.
了解在核糖体生物发生过程中,三种核 RNA 聚合酶如何协同合成核糖体组件的功能联系一直是广泛研究的焦点。为了在核糖体组件的产生中保持正确的动态平衡,细胞可能需要存在靶向这些 RNA 聚合酶共同亚基的蛋白质,以影响它们各自的活性。这项工作描述了酵母 Prefoldin 样 Bud27 蛋白如何能够调节由 RNA 聚合酶 I 介导的转录,可能通过影响转录延伸、RNA 聚合酶 III 的转录和核糖体 RNA 的加工。Bud27 还调节 RNA 聚合酶 II 依赖性的核糖体蛋白和核糖体生物发生调节基因的转录,可能通过占据它们的 DNA ORFs,并加工相应的 mRNA。与 RNA 聚合酶 II 一样,这种结合以转录速率依赖的方式发生。我们的数据还表明,Bud27 的失活改变了核糖体蛋白 S6 的磷酸化动力学,这是 TORC1 活性的一个读数。我们得出结论,Bud27 通过调节三种 RNA 聚合酶的活性,从而调节核糖体组件的合成,来影响核糖体生物发生过程的动态平衡。这很可能是通过 Bud27 与 TOR 信号通路的功能联系实现的。