Lee Seung Soo, Choi Jong-Il, Woo Han Min
Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
ACS Omega. 2019 Dec 5;4(25):21279-21287. doi: 10.1021/acsomega.9b02805. eCollection 2019 Dec 17.
The biological production of two-carbon compounds (ethylene glycol (EG) and glycolate) has been studied for the sustainable supply of the compounds to the polymer, cosmetic, textile, and medical industries. Here, we demonstrated the bioconversion of xylose to either ethylene glycol (EG) or glycolate using engineered , a well-known industrial amino acid producer. A synthetic ribulose 1-phosphate (Ru1P) pathway involving heterologous d-tagatose 3-epimerase and l-fuculose kinase/aldolase reactions was introduced in . Subsequently, heterologous expression of YqhD reductase with the synthetic Ru1P pathway led to ethylene glycol production from xylose. Additional pathway engineering in by mutating , which encodes an aldehyde dehydrogenase, abolished the by-product formation of glycolate during xylose conversion to EG at a yield of 0.75 mol per mol. In addition, the bioconversion of xylose to glycolate was achieved, and the almost maximum molar yield was 0.99 mol per mol xylose in via the Ru1P pathway. Thus, the synthetic Ru1P pathway in led bioconversion of xylose to either ethylene glycol or glycolate with high molar yields.
为了向聚合物、化妆品、纺织和医疗行业可持续供应二碳化合物(乙二醇(EG)和乙醇酸),人们对其生物生产进行了研究。在此,我们展示了利用工程化的著名工业氨基酸生产菌将木糖生物转化为乙二醇(EG)或乙醇酸。在该生产菌中引入了一条涉及异源D-塔格糖3-差向异构酶和L-岩藻糖激酶/醛缩酶反应的合成核酮糖1-磷酸(Ru1P)途径。随后,YqhD还原酶与合成Ru1P途径的异源表达使得从木糖生产乙二醇成为可能。通过对编码醛脱氢酶的基因进行突变,在该生产菌中进行额外的途径工程,消除了木糖转化为EG过程中乙醇酸副产物的形成,产率为每摩尔0.75摩尔。此外,还实现了木糖向乙醇酸的生物转化,通过Ru1P途径,在该生产菌中木糖转化为乙醇酸的几乎最大摩尔产率为每摩尔木糖0.99摩尔。因此,该生产菌中的合成Ru1P途径使得木糖向乙二醇或乙醇酸的生物转化具有高摩尔产率。