Becker Nadine, Horváth András, De Boer Teun, Fabbri Alan, Grad Christian, Fertig Niels, George Michael, Obergrussberger Alison
Nanion Technologies GmbH, Munich, Germany.
Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands.
Curr Protoc Pharmacol. 2020 Mar;88(1):e70. doi: 10.1002/cpph.70.
Current in vitro assays typically poorly predict cardiac liability as they focus on single ion channels overexpressed in cell lines. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), on the other hand, provide a unique opportunity for drug testing on human cardiomyocytes using high-throughput systems. However, these cells can differ from adult cardiomyocytes in their ion channel expression and, therefore, electrophysiologic properties. One of the main challenges of hiPSC-CMs is the physiologic expression of ion channels such as the inward rectifiers (e.g., Kir2.1-2.3), which conduct the cardiac inward rectifier potassium current (I ). I is one of the primary contributors in maintaining a stable resting membrane potential in cardiac cells, which is essential for excitability. This is only expressed in low levels, or sometimes not at all, in hiPSC-CMs as shown by patch clamp studies. Dynamic clamp is a method of electronically introducing ion currents (e.g., I ) into cells to compensate for the lack of endogenous expression, thus offering the potential to record more stable action potentials in hiPSC-CMs. In this article, we describe the method of using hiPSC-CMs on an automated patch clamp device (Patchliner) coupled with the automated dynamic clamp add-on (Dynamite ). We describe protocols for optimized cell handling and harvesting for use on the Patchliner and the steps required for automated execution of experiments and data analysis in dynamic clamp mode. © 2019 by John Wiley & Sons, Inc. Basic Protocol: Recording action potential pharmacology from human induced pluripotent stem cell-derived cardiomyocytes in automated patch clamp combined with dynamic clamp to introduce simulated I and compensate seal resistance Support Protocol 1: Cardiomyocyte plating and culture Support Protocol 2: Cell harvesting and dissociation Alternate Protocol: Recording action potential pharmacology at physiologic temperatures.
目前的体外试验通常对心脏毒性的预测能力较差,因为它们侧重于细胞系中过表达的单个离子通道。另一方面,人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)为使用高通量系统在人类心肌细胞上进行药物测试提供了独特的机会。然而,这些细胞在离子通道表达以及电生理特性方面可能与成年心肌细胞不同。hiPSC-CMs的主要挑战之一是离子通道的生理性表达,如内向整流器(例如Kir2.1-2.3),其传导心脏内向整流钾电流(I )。I 是维持心脏细胞稳定静息膜电位的主要因素之一,而静息膜电位对于兴奋性至关重要。膜片钳研究表明,I 在hiPSC-CMs中的表达水平较低,有时甚至完全不表达。动态钳是一种将离子电流(例如I )电子导入细胞以补偿内源性表达不足的方法,从而有可能在hiPSC-CMs中记录更稳定的动作电位。在本文中,我们描述了在自动膜片钳设备(Patchliner)上使用hiPSC-CMs并结合自动动态钳附加装置(Dynamite )的方法。我们描述了在Patchliner上进行优化的细胞处理和收获的方案,以及在动态钳模式下自动执行实验和数据分析所需的步骤。© 2019 John Wiley & Sons, Inc. 基本方案:在自动膜片钳结合动态钳中记录人诱导多能干细胞衍生心肌细胞的动作电位药理学,以引入模拟I 并补偿封接电阻 支持方案1:心肌细胞铺板和培养支持方案2:细胞收获和解离替代方案:在生理温度下记录动作电位药理学。