Suppr超能文献

一种用于评估厄瓜多尔亚马逊北部森林变化驱动因素的地理加权随机森林方法。

A geographically weighted random forest approach for evaluate forest change drivers in the Northern Ecuadorian Amazon.

机构信息

Research Center for the Territory and Sustainable Habitat, Universidad Tecnológica Indoamérica, Quito, Ecuador.

Center of Remote Sensing of Land Surfaces (ZFL), University of Bonn, Bonn, Germany.

出版信息

PLoS One. 2019 Dec 23;14(12):e0226224. doi: 10.1371/journal.pone.0226224. eCollection 2019.

Abstract

The Tropical Andes region includes biodiversity hotspots of high conservation priority whose management strategies depend on the analysis of forest dynamics drivers (FDDs). These depend on complex social and ecological interactions that manifest on different space-time scales and are commonly evaluated through regression analysis of multivariate datasets. However, processing such datasets is challenging, especially when time series are used and inconsistencies in data collection complicate their integration. Moreover, regression analysis in FDD characterization has been criticized for failing to capture spatial variability; therefore, alternatives such as geographically weighted regression (GWR) have been proposed, but their sensitivity to multicollinearity has not yet been solved. In this scenario, we present an innovative methodology that combines techniques to: 1) derive remote sensing time series products; 2) improve census processing with dasymetric mapping; 3) combine GWR and random forest (RF) to derive local variables importance; and 4) report results based in a clustering and hypothesis testing. We applied this methodology in the northwestern Ecuadorian Amazon, a highly heterogeneous region characterized by different active fronts of deforestation and reforestation, within the time period 2000-2010. Our objective was to identify linkages between these processes and validate the potential of the proposed methodology. Our findings indicate that land-use intensity proxies can be extracted from remote sensing time series, while intercensal analysis can be facilitated by calculating population density maps. Moreover, our implementation of GWR with RF achieved accurate predictions above the 74% using the out-of-bag samples, demonstrating that derived RF features can be used to construct hypothesis and discuss forest change drivers with more detailed information. In the other hand, our analysis revealed contrasting effects between deforestation and reforestation for variables related to suitability to agriculture and accessibility to its facilities, which is also reflected according patch size, land cover and population dynamics patterns. This approach demonstrates the benefits of integrating remote sensing-derived products and socioeconomic data to understand coupled socioecological systems more from a local than a global scale.

摘要

热带安第斯地区包括具有高度保护优先级的生物多样性热点地区,其管理策略取决于对森林动态驱动因素(FDD)的分析。这些驱动因素取决于复杂的社会和生态相互作用,这些相互作用表现在不同的时空尺度上,通常通过多元数据集的回归分析来评估。然而,处理这样的数据集是具有挑战性的,特别是当使用时间序列并且数据收集的不一致使得它们的集成变得复杂时。此外,FDD 特征描述中的回归分析因未能捕捉空间变异性而受到批评;因此,已经提出了替代方法,例如地理加权回归(GWR),但它们对多重共线性的敏感性尚未得到解决。在这种情况下,我们提出了一种创新的方法,该方法结合了以下技术:1)推导出遥感时间序列产品;2)使用 dasymetric 映射改进普查处理;3)结合 GWR 和随机森林(RF)推导出局部变量的重要性;4)根据聚类和假设检验报告结果。我们在厄瓜多尔亚马逊西北部应用了这种方法,该地区高度异质,具有不同的森林砍伐和重新造林活跃前沿,时间范围为 2000-2010 年。我们的目标是确定这些过程之间的联系,并验证所提出方法的潜力。我们的研究结果表明,可以从遥感时间序列中提取土地利用强度代理,而通过计算人口密度图可以方便 intercensal 分析。此外,我们使用 RF 实现的 GWR 达到了 74%以上的准确预测,使用了袋外样本,这表明衍生的 RF 特征可用于构建假设,并使用更详细的信息讨论森林变化驱动因素。另一方面,我们的分析揭示了与农业适宜性和其设施可达性相关的变量在森林砍伐和重新造林之间的对比效果,这也反映在斑块大小、土地覆盖和人口动态模式上。这种方法展示了将遥感衍生产品和社会经济数据集成以从局部而不是全局角度更深入地了解耦合的社会生态系统的好处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dcd/6927660/11b8b00b8035/pone.0226224.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验