Proville Jeremy, Zavala-Araiza Daniel, Wagner Gernot
Office of Economic Policy and Analysis, Environmental Defense Fund, New York, New York, United States of America.
Climate and Energy Program, Environmental Defense Fund, Austin, Texas, United States of America.
PLoS One. 2017 Mar 27;12(3):e0174610. doi: 10.1371/journal.pone.0174610. eCollection 2017.
We use a parallelized spatial analytics platform to process the twenty-one year totality of the longest-running time series of night-time lights data-the Defense Meteorological Satellite Program (DMSP) dataset-surpassing the narrower scope of prior studies to assess changes in area lit of countries globally. Doing so allows a retrospective look at the global, long-term relationships between night-time lights and a series of socio-economic indicators. We find the strongest correlations with electricity consumption, CO2 emissions, and GDP, followed by population, CH4 emissions, N2O emissions, poverty (inverse) and F-gas emissions. Relating area lit to electricity consumption shows that while a basic linear model provides a good statistical fit, regional and temporal trends are found to have a significant impact.
我们使用一个并行空间分析平台来处理长达21年的夜间灯光数据的最长时间序列——国防气象卫星计划(DMSP)数据集,超越了先前研究较窄的范围,以评估全球各国灯光照亮面积的变化。这样做能够回顾夜间灯光与一系列社会经济指标之间的全球长期关系。我们发现与电力消耗、二氧化碳排放和国内生产总值的相关性最强,其次是人口、甲烷排放、氧化亚氮排放、贫困(负相关)和氟气体排放。将灯光照亮面积与电力消耗相关联表明,虽然基本线性模型提供了良好的统计拟合,但区域和时间趋势被发现具有显著影响。