Suppr超能文献

使用耦合张量分解识别重度抑郁症中的振荡超连接和连接不足网络。

Identifying Oscillatory Hyperconnectivity and Hypoconnectivity Networks in Major Depression Using Coupled Tensor Decomposition.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:1895-1904. doi: 10.1109/TNSRE.2021.3111564. Epub 2021 Sep 17.

Abstract

Previous researches demonstrate that major depression disorder (MDD) is associated with widespread network dysconnectivity, and the dynamics of functional connectivity networks are important to delineate the neural mechanisms of MDD. Neural oscillations exert a key role in coordinating the activity of remote brain regions, and various assemblies of oscillations can modulate different networks to support different cognitive tasks. Studies have demonstrated that the dysconnectivity of electroencephalography (EEG) oscillatory networks is related with MDD. In this study, we investigated the oscillatory hyperconnectivity and hypoconnectivity networks in MDD under a naturalistic and continuous stimuli condition of music listening. With the assumption that the healthy group and the MDD group share similar brain topology from the same stimuli and also retain individual brain topology for group differences, we applied the coupled nonnegative tensor decomposition algorithm on two adjacency tensors with the dimension of time × frequency × connectivity × subject, and imposed double-coupled constraints on spatial and spectral modes. The music-induced oscillatory networks were identified by a correlation analysis approach based on the permutation test between extracted temporal factors and musical features. We obtained three hyperconnectivity networks from the individual features of MDD and three hypoconnectivity networks from common features. The results demonstrated that the dysfunction of oscillatory networks could affect the involvement in music perception for MDD patients. Those oscillatory dysconnectivity networks may provide promising references to reveal the pathoconnectomics of MDD and potential biomarkers for the diagnosis of MDD.

摘要

先前的研究表明,重度抑郁症(MDD)与广泛的网络连接异常有关,而功能连接网络的动态对于描绘 MDD 的神经机制非常重要。神经振荡在协调远程脑区的活动方面发挥着关键作用,各种振荡组合可以调节不同的网络以支持不同的认知任务。研究表明,脑电图(EEG)振荡网络的连接异常与 MDD 有关。在这项研究中,我们在音乐聆听的自然和连续刺激条件下,研究了 MDD 中的振荡超连接和低连接网络。假设健康组和 MDD 组从相同的刺激中共享相似的脑拓扑结构,并且保留组间差异的个体脑拓扑结构,我们应用了耦合非负张量分解算法对两个邻接张量进行了分析,这两个邻接张量的维度为时间×频率×连接×主体,并在空间和谱模式上施加了双重耦合约束。基于提取的时间因子与音乐特征之间的置换检验,通过相关分析方法确定音乐诱导的振荡网络。我们从 MDD 的个体特征中获得了三个超连接网络,从共同特征中获得了三个低连接网络。结果表明,振荡网络的功能障碍可能会影响 MDD 患者对音乐感知的参与。这些振荡连接异常网络可能为揭示 MDD 的病理连接组学和 MDD 诊断的潜在生物标志物提供有希望的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验