Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, Brazil.
Departamento de Física "J. J. Giambiagi" and IFIBA, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.
Phys Rev E. 2019 Nov;100(5-1):052136. doi: 10.1103/PhysRevE.100.052136.
Work in isolated quantum systems is a random variable and its probability distribution function obeys the celebrated fluctuation theorems of Crooks and Jarzynski. In this study, we provide a simple way to describe the work probability distribution function for sudden quench processes in quantum systems with large Hilbert spaces. This description can be constructed from two elements: the level density of the initial Hamiltonian, and a smoothed strength function that provides information about the influence of the perturbation over the eigenvectors in the quench process, and is especially suited to describe quantum many-body interacting systems. We also show how random models can be used to find such smoothed work probability distribution and apply this approach to different one-dimensional spin-1/2 chain models. Our findings provide an accurate description of the work distribution of such systems in the cases of intermediate and high temperatures in both chaotic and integrable regimes.
在孤立量子系统中,工作是一个随机变量,其概率分布函数遵循克罗克斯和雅日斯基著名的涨落定理。在这项研究中,我们提供了一种简单的方法来描述具有大 Hilbert 空间的量子系统中突现淬火过程的功概率分布函数。这种描述可以由两个元素构成:初始哈密顿量的能级密度,以及一个平滑的强度函数,它提供了关于淬火过程中微扰对本征向量影响的信息,特别适合描述量子多体相互作用系统。我们还展示了如何使用随机模型来找到这种平滑的功概率分布,并将这种方法应用于不同的一维自旋-1/2 链模型。我们的发现为这类系统在混沌和可积两种情况下的中间和高温条件下的功分布提供了准确的描述。