Suppr超能文献

非侵入式拟地转湍流动力学降阶建模框架。

Nonintrusive reduced order modeling framework for quasigeostrophic turbulence.

机构信息

School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA.

Department of Engineering Cybernetics, Norwegian University of Science and Technology, N-7465, Trondheim, Norway.

出版信息

Phys Rev E. 2019 Nov;100(5-1):053306. doi: 10.1103/PhysRevE.100.053306.

Abstract

In this study, we present a nonintrusive reduced order modeling (ROM) framework for large-scale quasistationary systems. The framework proposed herein exploits the time series prediction capability of long short-term memory (LSTM) recurrent neural network architecture such that (1) in the training phase, the LSTM model is trained on the modal coefficients extracted from the high-resolution data snapshots using proper orthogonal decomposition (POD) transform, and (2) in the testing phase, the trained model predicts the modal coefficients for the total time recursively based on the initial time history. Hence, no prior information about the underlying governing equations is required to generate the ROM. To illustrate the predictive performance of the proposed framework, the mean flow fields and time series response of the field values are reconstructed from the predicted modal coefficients by using an inverse POD transform. As a representative benchmark test case, we consider a two-dimensional quasigeostrophic ocean circulation model which, in general, displays an enormous range of fluctuating spatial and temporal scales. We first demonstrate that the conventional Galerkin projection-based reduced order modeling of such systems requires a high number of POD modes to obtain a stable flow physics. In addition, ROM-Galerkin projection (ROM-GP) does not seem to capture the intermittent bursts appearing in the dynamics of the first few most energetic modes. However, the proposed nonintrusive ROM framework based on LSTM (ROM-LSTM) yields a stable solution even for a small number of POD modes. We also observe that the ROM-LSTM model is able to capture quasiperiodic intermittent bursts accurately, and yields a stable and accurate mean flow dynamics using the time history of a few previous time states, denoted as the lookback time window in this paper. We show several features of ROM-LSTM framework such as significantly higher accuracy than ROM-GP, and faster performance using larger time step size. Throughout the paper, we demonstrate our findings in terms of time series evolution of the field values and mean flow patterns, which suggest that the proposed fully nonintrusive ROM framework is robust and capable of predicting chaotic nonlinear fluid flows in an extremely efficient way compared to the conventional projection-based ROM framework.

摘要

在这项研究中,我们提出了一种用于大规模准静态系统的非侵入式降阶建模 (ROM) 框架。本文提出的框架利用了长短期记忆 (LSTM) 递归神经网络架构的时间序列预测能力,以便 (1) 在训练阶段,LSTM 模型使用适当的正交分解 (POD) 变换从高分辨率数据快照中提取模态系数进行训练,以及 (2) 在测试阶段,训练后的模型根据初始时间历史递归预测总时间的模态系数。因此,生成 ROM 不需要关于潜在控制方程的先验信息。为了说明所提出框架的预测性能,通过使用逆 POD 变换,从预测的模态系数中重建平均流场和场值的时间序列响应。作为一个代表性的基准测试案例,我们考虑了二维准地转海洋环流模型,一般来说,它显示出巨大的波动时空尺度范围。我们首先证明,这种系统的传统基于 Galerkin 投影的降阶建模需要大量的 POD 模式才能获得稳定的流动物理。此外,ROM-Galerkin 投影 (ROM-GP) 似乎无法捕捉到前几个最活跃模式的动力学中出现的间歇性爆发。然而,基于 LSTM 的非侵入式 ROM 框架 (ROM-LSTM) 即使在 POD 模式数量较少的情况下也能产生稳定的解。我们还观察到,ROM-LSTM 模型能够准确捕捉准周期间歇性爆发,并使用几个先前时间状态的时间历史(在本文中称为回溯时间窗口)产生稳定和准确的平均流动动力学。本文展示了 ROM-LSTM 框架的几个特点,例如比 ROM-GP 具有更高的准确性,并且使用更大的时间步长可以更快地执行。整篇文章中,我们通过场值和平均流模式的时间序列演化来展示我们的发现,这表明与传统的基于投影的 ROM 框架相比,所提出的完全非侵入式 ROM 框架具有稳健性和能够以极其高效的方式预测混沌非线性流体流动的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验