Suppr超能文献

基于巴洛双胞胎自监督学习的流动与输运问题降阶建模

Reduced order modeling for flow and transport problems with Barlow Twins self-supervised learning.

作者信息

Kadeethum Teeratorn, Ballarin Francesco, O'Malley Daniel, Choi Youngsoo, Bouklas Nikolaos, Yoon Hongkyu

机构信息

Sandia National Laboratories, New Mexico, USA.

Cornell University, New York, USA.

出版信息

Sci Rep. 2022 Nov 30;12(1):20654. doi: 10.1038/s41598-022-24545-3.

Abstract

We propose a unified data-driven reduced order model (ROM) that bridges the performance gap between linear and nonlinear manifold approaches. Deep learning ROM (DL-ROM) using deep-convolutional autoencoders (DC-AE) has been shown to capture nonlinear solution manifolds but fails to perform adequately when linear subspace approaches such as proper orthogonal decomposition (POD) would be optimal. Besides, most DL-ROM models rely on convolutional layers, which might limit its application to only a structured mesh. The proposed framework in this study relies on the combination of an autoencoder (AE) and Barlow Twins (BT) self-supervised learning, where BT maximizes the information content of the embedding with the latent space through a joint embedding architecture. Through a series of benchmark problems of natural convection in porous media, BT-AE performs better than the previous DL-ROM framework by providing comparable results to POD-based approaches for problems where the solution lies within a linear subspace as well as DL-ROM autoencoder-based techniques where the solution lies on a nonlinear manifold; consequently, bridges the gap between linear and nonlinear reduced manifolds. We illustrate that a proficient construction of the latent space is key to achieving these results, enabling us to map these latent spaces using regression models. The proposed framework achieves a relative error of 2% on average and 12% in the worst-case scenario (i.e., the training data is small, but the parameter space is large.). We also show that our framework provides a speed-up of [Formula: see text] times, in the best case, and [Formula: see text] times on average compared to a finite element solver. Furthermore, this BT-AE framework can operate on unstructured meshes, which provides flexibility in its application to standard numerical solvers, on-site measurements, experimental data, or a combination of these sources.

摘要

我们提出了一种统一的数据驱动降阶模型(ROM),该模型弥合了线性和非线性流形方法之间的性能差距。使用深度卷积自动编码器(DC-AE)的深度学习ROM(DL-ROM)已被证明能够捕获非线性解流形,但在诸如适当正交分解(POD)等线性子空间方法最优的情况下,其性能表现不佳。此外,大多数DL-ROM模型依赖于卷积层,这可能会将其应用限制在仅结构化网格上。本研究中提出的框架依赖于自动编码器(AE)和巴洛双胞胎(BT)自监督学习的结合,其中BT通过联合嵌入架构最大化嵌入与潜在空间的信息内容。通过多孔介质中自然对流的一系列基准问题,BT-AE的性能优于先前的DL-ROM框架,对于解位于线性子空间的问题,其提供了与基于POD的方法相当的结果,对于解位于非线性流形上的问题,其提供了与基于DL-ROM自动编码器的技术相当的结果;因此,弥合了线性和非线性降阶流形之间的差距。我们表明,潜在空间的熟练构建是实现这些结果的关键,这使我们能够使用回归模型映射这些潜在空间。所提出的框架在平均情况下实现了2%的相对误差,在最坏情况下(即训练数据少但参数空间大)实现了12%的相对误差。我们还表明,与有限元求解器相比,我们的框架在最佳情况下加速了[公式:见原文]倍,平均加速了[公式:见原文]倍。此外,这个BT-AE框架可以在非结构化网格上运行,这为其应用于标准数值求解器、现场测量、实验数据或这些来源的组合提供了灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10de/9712510/430fac773438/41598_2022_24545_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验