Kadeethum Teeratorn, Ballarin Francesco, O'Malley Daniel, Choi Youngsoo, Bouklas Nikolaos, Yoon Hongkyu
Sandia National Laboratories, New Mexico, USA.
Cornell University, New York, USA.
Sci Rep. 2022 Nov 30;12(1):20654. doi: 10.1038/s41598-022-24545-3.
We propose a unified data-driven reduced order model (ROM) that bridges the performance gap between linear and nonlinear manifold approaches. Deep learning ROM (DL-ROM) using deep-convolutional autoencoders (DC-AE) has been shown to capture nonlinear solution manifolds but fails to perform adequately when linear subspace approaches such as proper orthogonal decomposition (POD) would be optimal. Besides, most DL-ROM models rely on convolutional layers, which might limit its application to only a structured mesh. The proposed framework in this study relies on the combination of an autoencoder (AE) and Barlow Twins (BT) self-supervised learning, where BT maximizes the information content of the embedding with the latent space through a joint embedding architecture. Through a series of benchmark problems of natural convection in porous media, BT-AE performs better than the previous DL-ROM framework by providing comparable results to POD-based approaches for problems where the solution lies within a linear subspace as well as DL-ROM autoencoder-based techniques where the solution lies on a nonlinear manifold; consequently, bridges the gap between linear and nonlinear reduced manifolds. We illustrate that a proficient construction of the latent space is key to achieving these results, enabling us to map these latent spaces using regression models. The proposed framework achieves a relative error of 2% on average and 12% in the worst-case scenario (i.e., the training data is small, but the parameter space is large.). We also show that our framework provides a speed-up of [Formula: see text] times, in the best case, and [Formula: see text] times on average compared to a finite element solver. Furthermore, this BT-AE framework can operate on unstructured meshes, which provides flexibility in its application to standard numerical solvers, on-site measurements, experimental data, or a combination of these sources.
我们提出了一种统一的数据驱动降阶模型(ROM),该模型弥合了线性和非线性流形方法之间的性能差距。使用深度卷积自动编码器(DC-AE)的深度学习ROM(DL-ROM)已被证明能够捕获非线性解流形,但在诸如适当正交分解(POD)等线性子空间方法最优的情况下,其性能表现不佳。此外,大多数DL-ROM模型依赖于卷积层,这可能会将其应用限制在仅结构化网格上。本研究中提出的框架依赖于自动编码器(AE)和巴洛双胞胎(BT)自监督学习的结合,其中BT通过联合嵌入架构最大化嵌入与潜在空间的信息内容。通过多孔介质中自然对流的一系列基准问题,BT-AE的性能优于先前的DL-ROM框架,对于解位于线性子空间的问题,其提供了与基于POD的方法相当的结果,对于解位于非线性流形上的问题,其提供了与基于DL-ROM自动编码器的技术相当的结果;因此,弥合了线性和非线性降阶流形之间的差距。我们表明,潜在空间的熟练构建是实现这些结果的关键,这使我们能够使用回归模型映射这些潜在空间。所提出的框架在平均情况下实现了2%的相对误差,在最坏情况下(即训练数据少但参数空间大)实现了12%的相对误差。我们还表明,与有限元求解器相比,我们的框架在最佳情况下加速了[公式:见原文]倍,平均加速了[公式:见原文]倍。此外,这个BT-AE框架可以在非结构化网格上运行,这为其应用于标准数值求解器、现场测量、实验数据或这些来源的组合提供了灵活性。