Suppr超能文献

物理驱动的本征正交分解:一种偏微分方程的模拟方法

Physics-driven proper orthogonal decomposition: A simulation methodology for partial differential equations.

作者信息

Pulimeno Alessandro, Coates-Farley Graham, Veresko Martin, Jiang Lin, Cheng Ming-Cheng, Liu Yu, Hou Daqing

机构信息

Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699, USA.

Current affiliation, Department of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands.

出版信息

MethodsX. 2023 Apr 28;10:102204. doi: 10.1016/j.mex.2023.102204. eCollection 2023.

Abstract

A simulation methodology derived from a learning algorithm based on Proper Orthogonal Decomposition (POD) is presented to solve partial differential equations (PDEs) for physical problems of interest. Using the developed methodology, a physical problem of interest is projected onto a functional space described by a set of basis functions (or POD modes) that are trained via the POD by solution data collected from direct numerical simulations (DNSs) of the PDE. The Galerkin projection of the PDE is then performed to account for physical principles guided by the PDE. The procedure to construct the physics-driven POD-Galerkin simulation methodology is presented in detail, together with demonstrations of POD-Galerkin simulations of dynamic thermal analysis on a microprocessor and the Schrödinger equation for a quantum nanostructure. The physics-driven methodology allows a reduction of several orders in degrees of freedom (DoF) while maintaining high accuracy. This leads to a drastic decrease in computational effort when compared with DNS. The major steps for implementing the methodology include:•Solution data collection from DNSs of the physical problem subjected to parametric variations of the system.•Calculations of POD modes and eigenvalues from the collected data using the method of snapshots.•Galerkin projection of the governing equation onto the POD space to derive the model.

摘要

提出了一种基于适当正交分解(POD)的学习算法的模拟方法,用于求解感兴趣的物理问题的偏微分方程(PDE)。使用所开发的方法,将感兴趣的物理问题投影到一个由一组基函数(或POD模式)描述的函数空间上,这些基函数通过POD由从PDE的直接数值模拟(DNS)收集的解数据进行训练。然后对PDE进行伽辽金投影,以考虑由PDE指导的物理原理。详细介绍了构建物理驱动的POD - 伽辽金模拟方法的过程,以及对微处理器动态热分析和量子纳米结构的薛定谔方程的POD - 伽辽金模拟的演示。物理驱动的方法在保持高精度的同时,可将自由度(DoF)降低几个数量级。与DNS相比,这导致计算量大幅减少。实施该方法的主要步骤包括:

• 从受系统参数变化影响的物理问题的DNS中收集解数据。

• 使用快照法从收集的数据中计算POD模式和特征值。

• 将控制方程投影到POD空间以推导模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b4e/10326499/6cb264efc392/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验