School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
Phys Chem Chem Phys. 2020 Jan 21;22(3):1534-1542. doi: 10.1039/c9cp02194a. Epub 2019 Dec 24.
Dynein, a large and complex motor protein, harnesses energy from adenosine triphosphate (ATP) hydrolysis to regulate essential cellular activities. The ATP hydrolysis mechanism for the dynein motor is still shrouded in mystery. Herein, molecular dynamics simulations of a dynein motor disclosed that two water molecules are present close to the γ-phosphate of ATP and Glu1742 at the AAA1 site of dynein. We have proposed three possible mechanisms for the ATP hydrolysis. We divulge by using a quantum mechanics/molecular mechanics (QM/MM) study that two water molecules and Glu1742 are crucial for facilitating the ATP hydrolysis reaction in dynein. Moreover, the ATP hydrolysis step is initiated by the activation of lytic water (W1) by Glu1742 through relay proton transfers with the help of auxiliary water (W2) yielding HPO and ADP, as a product. In the next step, a proton is shifted back from Glu1742 to generate inorganic phosphate (HPO) via another relay proton transfer event. The overall activation barrier for the Glu1742 assisted ATP hydrolysis is found to be the most favourable pathway compared to other plausible pathways. We also unearthed that ATP hydrolysis in dynein follows a so-called associative-like pathway in its rate-limiting step. Our study ascertained the important indirect roles of the two amino acids (such as Arg2109, Asn1792) and Mg ion in the ATP hydrolysis of dynein. Additionally, multiple sequence alignment of the different organisms of dynein motors has conveyed the evolutionary importance of the Glu1742, Asn1742, and Arg2109 residues, respectively. As similar mechanisms are also prevalent in other motors, and GTPase and ATPase enzymes, the present finding spells out the definitive requirement of a proton relay process through an extended water-chain as one of the key components in an enzymatic ATP hydrolysis reaction.
动力蛋白是一种大型而复杂的马达蛋白,它利用三磷酸腺苷(ATP)水解产生的能量来调节基本的细胞活动。动力蛋白的 ATP 水解机制仍然笼罩在神秘之中。本文通过分子动力学模拟揭示了在动力蛋白的 AAA1 位点,有两个水分子靠近 ATP 的γ-磷酸和 Glu1742。我们提出了三种可能的 ATP 水解机制。通过量子力学/分子力学(QM/MM)研究,我们发现两个水分子和 Glu1742 对于促进动力蛋白中的 ATP 水解反应至关重要。此外,ATP 水解步骤是由 Glu1742 通过辅助水(W2)的接力质子转移激活裂解水(W1)启动的,生成 HPO 和 ADP 作为产物。在下一个步骤中,质子通过另一个接力质子转移事件从 Glu1742 转移回生成无机磷酸盐(HPO)。与其他可能的途径相比,Glu1742 辅助的 ATP 水解的总活化势垒被发现是最有利的途径。我们还发现,动力蛋白中的 ATP 水解在其限速步骤中遵循所谓的缔合样途径。我们的研究确定了 Arg2109、Asn1792 等两个氨基酸以及 Mg 离子在动力蛋白 ATP 水解中的重要间接作用。此外,对不同生物体的动力蛋白马达的多重序列比对表明,Glu1742、Asn1742 和 Arg2109 残基分别具有进化重要性。由于类似的机制在其他马达和 GTPase 和 ATPase 酶中也很普遍,因此目前的发现阐明了质子中继过程通过扩展水链作为酶促 ATP 水解反应的关键组成部分之一的明确要求。