Suppr超能文献

工作中的动力蛋白 dynein 分子的计算建模。

Computational modeling of dynein motor proteins at work.

机构信息

School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.

出版信息

Chem Commun (Camb). 2021 Jan 14;57(3):272-283. doi: 10.1039/d0cc05857b.

Abstract

Along with various experimental methods, a combination of theoretical and computational methods is essential to explore different length-scale and time-scale processes in the biological system. The functional mechanism of a dynein, an ATP-fueled motor protein, working in a multiprotein complex, involves a wide range of length/time-scale events. It generates mechanical force from chemical energy and moves on microtubules towards the minus end direction while performing a large number of biological processes including ciliary beating, intracellular material transport, and cell division. Like in the cases of other conventional motor proteins, a combination of experimental techniques including X-crystallography, cryo-electron microscopy, and single molecular assay have provided a wealth of information about the mechanochemical cycle of a dynein. Dyneins have a large and complex structural architecture and therefore, computational modeling of different aspects of a dynein is extremely challenging. As the process of dynein movement involves varying length and timescales, it demands, like in experiments, a combination of computational methods covering such a wide range of processes for the comprehensive investigation of the mechanochemical cycle. In this review article, we will summarize how the use of state-of-the-art computational methods can provide a detailed molecular understanding of the mechanochemical cycle of the dynein. We implemented all-atom molecular dynamics simulations and hybrid quantum-mechanics/molecular-mechanics simulations to explore the ATP hydrolysis mechanisms at the primary ATPase site (AAA1) of dynein. To investigate the large-scale conformational changes we employed coarse-grained structure-based molecular dynamics simulations to capture the domain motions. Here we explored the conformational changes upon binding of ATP at AAA1, nucleotide state-dependent regulation of the mechanochemical cycle, and inter-head coordination by inter-head tension. Additionally, implementing a phenomenological theoretical model we explore the force-dependent detachment rate of a motorhead from the microtubule and the principle of multi-dynein cooperation during cargo transport.

摘要

除了各种实验方法之外,理论和计算方法的结合对于探索生物系统中的不同长度和时间尺度过程也是必不可少的。在多蛋白复合物中工作的动力蛋白(一种由 ATP 驱动的马达蛋白)的功能机制涉及广泛的长度/时间尺度事件。它从化学能中产生机械力,并在微管上朝着负端方向移动,同时执行许多生物过程,包括纤毛运动、细胞内物质运输和细胞分裂。与其他传统的马达蛋白一样,包括 X 射线晶体学、冷冻电子显微镜和单分子测定在内的一系列实验技术提供了大量有关动力蛋白的机械化学循环的信息。动力蛋白具有庞大而复杂的结构架构,因此,对动力蛋白的不同方面进行计算建模极具挑战性。由于动力蛋白的运动过程涉及不同的长度和时间尺度,因此需要像在实验中那样,结合覆盖如此广泛的过程的计算方法,以全面研究机械化学循环。在这篇综述文章中,我们将总结如何使用最先进的计算方法为动力蛋白的机械化学循环提供详细的分子理解。我们实施了全原子分子动力学模拟和混合量子力学/分子力学模拟,以探索动力蛋白中主要 ATP 酶位点(AAA1)的 ATP 水解机制。为了研究大规模构象变化,我们采用了基于粗粒结构的分子动力学模拟来捕获结构域运动。在这里,我们探讨了 AAA1 处结合 ATP 时的构象变化、核苷酸状态依赖性的机械化学循环调控以及头对头张力的协调作用。此外,通过实施一种现象学理论模型,我们探讨了马达头在微管上的力依赖性脱离率以及在货物运输过程中多动力蛋白合作的原理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验