Suppr超能文献

丙泊酚诱导驱动蛋白行进性丧失的机制基础。

Mechanistic basis of propofol-induced disruption of kinesin processivity.

机构信息

School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, 700032 Kolkata, India.

Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180;

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 2;118(5). doi: 10.1073/pnas.2023659118.

Abstract

Propofol is a widely used general anesthetic to induce and maintain anesthesia, and its effects are thought to occur through impact on the ligand-gated channels including the GABA receptor. Propofol also interacts with a large number of proteins including molecular motors and inhibits kinesin processivity, resulting in significant decrease in the run length for conventional kinesin-1 and kinesin-2. However, the molecular mechanism by which propofol achieves this outcome is not known. The structural transition in the kinesin neck-linker region is crucial for its processivity. In this study, we analyzed the effect of propofol and its fluorine derivative (fropofol) on the transition in the neck-linker region of kinesin. Propofol binds at two crucial surfaces in the leading head: one at the microtubule-binding interface and the other in the neck-linker region. We observed in both the cases the order-disorder transition of the neck-linker was disrupted and kinesin lost its signal for forward movement. In contrast, there was not an effect on the neck-linker transition with propofol binding at the trailing head. Free-energy calculations show that propofol at the microtubule-binding surface significantly reduces the microtubule-binding affinity of the kinesin head. While propofol makes pi-pi stacking and H-bond interactions with the propofol binding cavity, fropofol is unable to make a suitable interaction at this binding surface. Therefore, the binding affinity of fropofol is much lower compared to propofol. Hence, this study provides a mechanism by which propofol disrupts kinesin processivity and identifies transitions in the ATPase stepping cycle likely affected.

摘要

异丙酚是一种广泛用于诱导和维持麻醉的全身麻醉剂,其作用被认为是通过影响配体门控通道(包括 GABA 受体)而产生的。异丙酚还与包括分子马达在内的大量蛋白质相互作用,并抑制驱动蛋白的行进性,导致传统驱动蛋白-1 和驱动蛋白-2 的运行长度显著缩短。然而,异丙酚实现这一结果的分子机制尚不清楚。驱动蛋白颈环区的结构转变对其行进性至关重要。在这项研究中,我们分析了异丙酚及其氟代衍生物(氟异丙酚)对驱动蛋白颈环区结构转变的影响。异丙酚结合在头部的两个关键表面上:一个在微管结合界面上,另一个在颈环区。我们观察到在这两种情况下,颈环区的有序-无序转变都被打乱了,驱动蛋白失去了向前运动的信号。相比之下,在尾部头部结合异丙酚时,对颈环区的转变没有影响。自由能计算表明,异丙酚在微管结合表面显著降低了驱动蛋白头部的微管结合亲和力。虽然异丙酚与异丙酚结合腔形成了π-π堆积和氢键相互作用,但氟异丙酚无法在该结合表面形成合适的相互作用。因此,与异丙酚相比,氟异丙酚的结合亲和力要低得多。因此,这项研究提供了一种机制,即异丙酚破坏驱动蛋白的行进性,并确定可能受影响的 ATP 酶步进循环的转变。

相似文献

2
Common general anesthetic propofol impairs kinesin processivity.常用的全身麻醉药物丙泊酚会损害驱动蛋白的行进性。
Proc Natl Acad Sci U S A. 2017 May 23;114(21):E4281-E4287. doi: 10.1073/pnas.1701482114. Epub 2017 May 8.
6
The role of ATP hydrolysis for kinesin processivity.ATP水解在驱动蛋白持续运动性中的作用。
J Biol Chem. 2002 May 10;277(19):17079-87. doi: 10.1074/jbc.M108793200. Epub 2002 Feb 25.

本文引用的文献

2
Gō model revisited.重温戈模型。
Biophys Physicobiol. 2019 Nov 29;16:248-255. doi: 10.2142/biophysico.16.0_248. eCollection 2019.
3
Role of AAA3 Domain in Allosteric Communication of Dynein Motor Proteins.AAA3结构域在动力蛋白变构通讯中的作用
ACS Omega. 2019 Dec 3;4(26):21921-21930. doi: 10.1021/acsomega.9b02946. eCollection 2019 Dec 24.
4
Mechanistic study of the ATP hydrolysis reaction in dynein motor protein.动力蛋白中 ATP 水解反应的机制研究。
Phys Chem Chem Phys. 2020 Jan 21;22(3):1534-1542. doi: 10.1039/c9cp02194a. Epub 2019 Dec 24.
7
Axonal transport: Driving synaptic function.轴突运输:驱动突触功能。
Science. 2019 Oct 11;366(6462). doi: 10.1126/science.aaw9997.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验