Suppr超能文献

使用机器学习算法识别非复杂性尿路感染的临床和尿液生物标志物。

Identification of clinical and urine biomarkers for uncomplicated urinary tract infection using machine learning algorithms.

机构信息

Division of Population Medicine, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.

Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.

出版信息

Sci Rep. 2019 Dec 23;9(1):19694. doi: 10.1038/s41598-019-55523-x.

Abstract

Women with uncomplicated urinary tract infection (UTI) symptoms are commonly treated with empirical antibiotics, resulting in overuse of antibiotics, which promotes antimicrobial resistance. Available diagnostic tools are either not cost-effective or diagnostically sub-optimal. Here, we identified clinical and urinary immunological predictors for UTI diagnosis. We explored 17 clinical and 42 immunological potential predictors for bacterial culture among women with uncomplicated UTI symptoms using random forest or support vector machine coupled with recursive feature elimination. Urine cloudiness was the best performing clinical predictor to rule out (negative likelihood ratio [LR-] = 0.4) and rule in (LR+ = 2.6) UTI. Using a more discriminatory scale to assess cloudiness (turbidity) increased the accuracy of UTI prediction further (LR+ = 4.4). Urinary levels of MMP9, NGAL, CXCL8 and IL-1β together had a higher LR+ (6.1) and similar LR- (0.4), compared to cloudiness. Varying the bacterial count thresholds for urine culture positivity did not alter best clinical predictor selection, but did affect the number of immunological predictors required for reaching an optimal prediction. We conclude that urine cloudiness is particularly helpful in ruling out negative UTI cases. The identified urinary biomarkers could be used to develop a point of care test for UTI but require further validation.

摘要

患有单纯性尿路感染(UTI)症状的女性通常接受经验性抗生素治疗,导致抗生素过度使用,从而促进了抗菌药物耐药性的产生。现有的诊断工具要么不具有成本效益,要么诊断效果不佳。在这里,我们确定了用于 UTI 诊断的临床和尿液免疫学预测因子。我们使用随机森林或支持向量机结合递归特征消除法,探索了 17 种临床和 42 种免疫潜在预测因子,以确定患有单纯性 UTI 症状的女性的细菌培养情况。尿液混浊是排除(负似然比 [LR-] = 0.4)和确诊(LR+ = 2.6)UTI 的最佳临床预测因子。使用更具区分度的浊度评估标准进一步提高了 UTI 预测的准确性(LR+ = 4.4)。与混浊相比,MMP9、NGAL、CXCL8 和 IL-1β 的尿液水平具有更高的 LR+(6.1)和相似的 LR-(0.4)。改变尿液培养阳性的细菌计数阈值不会改变最佳临床预测因子的选择,但会影响达到最佳预测所需的免疫学预测因子的数量。我们得出的结论是,尿液混浊对于排除阴性 UTI 病例特别有帮助。鉴定出的尿液生物标志物可用于开发 UTI 的即时检测点,但需要进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c4/6928162/88fec44bf8df/41598_2019_55523_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验