Suppr超能文献

硬 X 射线光栅干涉计量用微阵列阳极结构目标的定量分析。

Quantitative analysis of a micro array anode structured target for hard x-ray grating interferometry.

机构信息

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China. Sigray, Inc. 5750 Imhoff Drive, Concord, CA 94520, United States of America. Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America.

出版信息

Phys Med Biol. 2020 Feb 4;65(3):035008. doi: 10.1088/1361-6560/ab6578.

Abstract

Talbot-Lau interferometry (TLI) provides additional contrast modes for x-ray imaging that are complementary to conventional absorption radiography. TLI is particularly interesting because it is one of the few practical methods for realizing phase contrast with x-rays that is compatible with large-spot high power x-ray sources. A novel micro array anode structured target (MAAST) x-ray source offers several advantages for TLI over the conventional combination of an extended x-ray source coupled with an absorption grating including higher flux and larger field of view, and these advantages become more pronounced for x-ray energies in excess of 30 keV. A Monte Carlo simulation was performed to determine the optimal parameters for a MAAST source for use with TLI. It was found that the both spatial distribution of x-ray production and the number of x-ray produced in the MAAST have a strong dependence on the incidence angle of the electron beam.

摘要

塔尔博特-劳干涉仪(TLI)为 X 射线成像提供了额外的对比模式,与传统的吸收射线照相术互补。TLI 特别有趣,因为它是少数几种实用的实现 X 射线相位对比的方法之一,与大光斑高功率 X 射线源兼容。一种新颖的微阵列阳极结构靶(MAAST)X 射线源为 TLI 提供了优于传统扩展 X 射线源与吸收光栅组合的几个优势,包括更高的通量和更大的视场,并且对于超过 30keV 的 X 射线能量,这些优势更加明显。进行了蒙特卡罗模拟,以确定用于 TLI 的 MAAST 源的最佳参数。结果发现,X 射线产生的空间分布和 MAAST 中产生的 X 射线数量都强烈依赖于电子束的入射角。

相似文献

1
Quantitative analysis of a micro array anode structured target for hard x-ray grating interferometry.
Phys Med Biol. 2020 Feb 4;65(3):035008. doi: 10.1088/1361-6560/ab6578.
2
Design optimization of a periodic microstructured array anode for hard x-ray grating interferometry.
Phys Med Biol. 2019 Jul 16;64(14):145011. doi: 10.1088/1361-6560/ab26ce.
3
High-resolution multicontrast tomography with an X-ray microarray anode-structured target source.
Proc Natl Acad Sci U S A. 2021 Jun 22;118(25). doi: 10.1073/pnas.2103126118.
4
Spherical grating based x-ray Talbot interferometry.
Med Phys. 2015 Nov;42(11):6514-9. doi: 10.1118/1.4933195.
5
Increasing the field of view in grating based X-ray phase contrast imaging using stitched gratings.
J Xray Sci Technol. 2016 Mar 17;24(3):379-88. doi: 10.3233/XST-160552.
6
A preclinical Talbot-Lau prototype for x-ray dark-field imaging of human-sized objects.
Med Phys. 2018 Jun;45(6):2565-2571. doi: 10.1002/mp.12889. Epub 2018 Apr 27.
9
Empirical beam hardening and ring artifact correction for x-ray grating interferometry (EBHC-GI).
Med Phys. 2021 Mar;48(3):1327-1340. doi: 10.1002/mp.14672. Epub 2021 Jan 10.
10
Correction for X-Ray Scatter and Detector Crosstalk in Dark-Field Radiography.
IEEE Trans Med Imaging. 2024 Jul;43(7):2646-2656. doi: 10.1109/TMI.2024.3374974. Epub 2024 Jul 1.

引用本文的文献

1
Multimodal Image Fusion for X-ray Grating Interferometry.
Sensors (Basel). 2023 Mar 14;23(6):3115. doi: 10.3390/s23063115.
2
High-resolution multicontrast tomography with an X-ray microarray anode-structured target source.
Proc Natl Acad Sci U S A. 2021 Jun 22;118(25). doi: 10.1073/pnas.2103126118.

本文引用的文献

1
Design and numerical simulations of W-diamond transmission target for distributed x-ray sources.
Biomed Phys Eng Express. 2019 Feb;5(2). doi: 10.1088/2057-1976/aae55f. Epub 2019 Jan 24.
2
Design optimization of a periodic microstructured array anode for hard x-ray grating interferometry.
Phys Med Biol. 2019 Jul 16;64(14):145011. doi: 10.1088/1361-6560/ab26ce.
3
Dynamic In Vivo Chest X-ray Dark-Field Imaging in Mice.
IEEE Trans Med Imaging. 2019 Feb;38(2):649-656. doi: 10.1109/TMI.2018.2868999. Epub 2018 Sep 6.
4
X-Ray Phase-Contrast Technology in Breast Imaging: Principles, Options, and Clinical Application.
AJR Am J Roentgenol. 2018 Jul;211(1):133-145. doi: 10.2214/AJR.17.19179. Epub 2018 May 24.
6
Diagnosis of breast cancer based on microcalcifications using grating-based phase contrast CT.
Eur Radiol. 2018 Sep;28(9):3742-3750. doi: 10.1007/s00330-017-5158-4. Epub 2018 Jan 26.
7
X-ray Dark-field Radiography - In-Vivo Diagnosis of Lung Cancer in Mice.
Sci Rep. 2017 Mar 24;7(1):402. doi: 10.1038/s41598-017-00489-x.
8
Design and demonstration of phase gratings for 2D single grating interferometer.
Opt Express. 2015 Nov 16;23(23):29399-412. doi: 10.1364/OE.23.029399.
9
Two dimensional x-ray phase imaging using single grating interferometer with embedded x-ray targets.
Opt Express. 2015 Jun 29;23(13):16582-8. doi: 10.1364/OE.23.016582.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验