文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

槲皮素、没食子儿茶素没食子酸酯、姜黄素和白藜芦醇:从膳食来源到人类 microRNA 调节。

Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation.

机构信息

Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy.

Department of Health Science, School of Medicine, University of Magna Graecia, Clinical Pharmacology Unit, Mater Domini Hospital, 88100 Catanzaro, Italy.

出版信息

Molecules. 2019 Dec 23;25(1):63. doi: 10.3390/molecules25010063.


DOI:10.3390/molecules25010063
PMID:31878082
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6983040/
Abstract

Epidemiologic studies suggest that dietary polyphenol intake is associated with a lower incidence of several non-communicable diseases. Although several foods contain complex mixtures of polyphenols, numerous factors can affect their content. Besides the well-known capability of these molecules to act as antioxidants, they are able to interact with cell-signaling pathways, modulating gene expression, influencing the activity of transcription factors, and modulating microRNAs. Here we deeply describe four polyphenols used as nutritional supplements: quercetin, resveratrol, epigallocatechin gallate (ECGC), and curcumin, summarizing the current knowledge about them, spanning from dietary sources to the epigenetic capabilities of these compounds on microRNA modulation.

摘要

流行病学研究表明,饮食中的多酚摄入与几种非传染性疾病的发病率降低有关。虽然几种食物含有复杂的多酚混合物,但许多因素会影响它们的含量。除了这些分子作为抗氧化剂的众所周知的能力外,它们还能够与细胞信号通路相互作用,调节基因表达,影响转录因子的活性,并调节 microRNAs。在这里,我们深入描述了四种用作营养补充剂的多酚:槲皮素、白藜芦醇、表没食子儿茶素没食子酸酯(EGCG)和姜黄素,总结了关于它们的当前知识,从饮食来源到这些化合物对 microRNA 调节的表观遗传能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/09e0f8b85c7d/molecules-25-00063-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/5210288f40be/molecules-25-00063-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/cdaa137d8ae5/molecules-25-00063-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/58e4644b9ead/molecules-25-00063-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/4449383752dd/molecules-25-00063-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/d00736ca1749/molecules-25-00063-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/45578cb4dbf0/molecules-25-00063-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/1d1dfc80683f/molecules-25-00063-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/1180b5829d10/molecules-25-00063-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/09e0f8b85c7d/molecules-25-00063-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/5210288f40be/molecules-25-00063-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/cdaa137d8ae5/molecules-25-00063-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/58e4644b9ead/molecules-25-00063-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/4449383752dd/molecules-25-00063-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/d00736ca1749/molecules-25-00063-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/45578cb4dbf0/molecules-25-00063-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/1d1dfc80683f/molecules-25-00063-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/1180b5829d10/molecules-25-00063-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b18f/6983040/09e0f8b85c7d/molecules-25-00063-g009.jpg

相似文献

[1]
Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation.

Molecules. 2019-12-23

[2]
Influence of Natural Polyphenols on Isolated Yeast Dipodascus magnusii Mitochondria.

Dokl Biochem Biophys. 2020-1

[3]
Polyphenols and inflammatory bowel disease: Natural products with therapeutic effects?

Crit Rev Food Sci Nutr. 2024

[4]
Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective.

Int J Nanomedicine. 2017-4-4

[5]
Pharmaceutical Topical Delivery of Poorly Soluble Polyphenols: Potential Role in Prevention and Treatment of Melanoma.

AAPS PharmSciTech. 2019-7-11

[6]
Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model.

J Agric Food Chem. 2014-7-31

[7]
Therapeutic Potential of Polyphenols-Loaded Polymeric Nanoparticles in Cardiovascular System.

Molecules. 2020-7-22

[8]
Polyphenols: key issues involved in chemoprevention of prostate cancer.

Oxid Med Cell Longev. 2012-5-28

[9]
The role of dietary polyphenols in alternating DNA methylation in cancer.

Crit Rev Food Sci Nutr. 2023-11

[10]
Dietary antioxidants as a source of hydrogen peroxide.

Food Chem. 2018-11-30

引用本文的文献

[1]
Toxins to treatments: Impact of environmental pollutants, gut microbiota, and natural compounds on non-alcoholic fatty liver disease progression.

World J Hepatol. 2025-8-27

[2]
What a Modern Physician Should Know About microRNAs in the Diagnosis and Treatment of Diabetic Kidney Disease.

Int J Mol Sci. 2025-7-11

[3]
The impacts of natural polyphenols and exercise alone or together on microRNAs and angiogenic signaling.

Front Pharmacol. 2025-6-24

[4]
Nanomaterials targeting cancer stem cells to overcome drug resistance and tumor recurrence.

Front Oncol. 2025-6-6

[5]
Protecting vascular health: the role of flavonoids during pregnancy complications in mitigating the risk of vascular dementia later in life.

Inflammopharmacology. 2025-6-5

[6]
Sensory Profiling of Burdekin Plum Leathers and Consumer Acceptability of Its Combination With Trail Mix.

Food Sci Nutr. 2025-5-12

[7]
Polyphenol blend enhances zootechnical performance, improves meat quality, and reduces the severity of wooden breast in broiler chickens.

Front Vet Sci. 2025-4-11

[8]
Antioxidant Activity and Anti-Inflammatory Effect of Blood Orange By-Products in Treated HT-29 and Caco-2 Colorectal Cancer Cell Lines.

Antioxidants (Basel). 2025-3-18

[9]
Flavonoids as Natural Anti-Inflammatory Agents in the Atopic Dermatitis Treatment.

Pharmaceutics. 2025-2-15

[10]
Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Roles in Metabolic Health.

Antioxidants (Basel). 2025-2-10

本文引用的文献

[1]
Exosomes May Be the Potential New Direction of Research in Osteoarthritis Management.

Biomed Res Int. 2019-11-3

[2]
Acid-activatable polymeric curcumin nanoparticles as therapeutic agents for osteoarthritis.

Nanomedicine. 2019-10-28

[3]
The use of curcumin as an effective adjuvant to cancer therapy: A short review.

Biotechnol Appl Biochem. 2020-3

[4]
Curcumin and Cancer.

Nutrients. 2019-10-5

[5]
LC-ESI-QTOF/MS Characterisation of Phenolic Acids and Flavonoids in Polyphenol-Rich Fruits and Vegetables and Their Potential Antioxidant Activities.

Antioxidants (Basel). 2019-9-17

[6]
Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease.

Rev Neurol (Paris). 2019-9-11

[7]
Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer.

Clin Transl Med. 2019-8-28

[8]
Plant phenolics as functional food ingredients.

Adv Food Nutr Res. 2019

[9]
Involvement of TLR4 in the protective effect of intra-articular administration of curcumin on rat experimental osteoarthritis.

Acta Cir Bras. 2019-8-19

[10]
Ketogenic Diet and microRNAs Linked to Antioxidant Biochemical Homeostasis.

Antioxidants (Basel). 2019-8-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索