Radboud University Nijmegen, Comeniuslaan 4, 6525 HP, Nijmegen, The Netherlands.
Donders Centre for Cognition, Montessorilaan 3, 6525 HR, Nijmegen, The Netherlands.
Sci Rep. 2019 Dec 27;9(1):19873. doi: 10.1038/s41598-019-56482-z.
Quantification and parametrisation of movement are widely used in animal behavioural paradigms. In particular, free movement in controlled conditions (e.g., open field paradigm) is used as a "proxy for indices of baseline and drug-induced behavioural changes. However, the analysis of this is often time- and labour-intensive and existing algorithms do not always classify the behaviour correctly. Here, we propose a new approach to quantify behaviour in an unconstrained environment: searching for frequent patterns (k-motifs) in the time series representing the position of the subject over time. Validation of this method was performed using subchronic quinpirole-induced changes in open field experiment behaviours in rodents. Analysis of this data was performed using k-motifs as features to better classify subjects into experimental groups on the basis of behaviour in the open field. Our classifier using k-motifs gives as high as 94% accuracy in classifying repetitive behaviour versus controls which is a substantial improvement compared to currently available methods including using standard feature definitions (depending on the choice of feature set and classification strategy, accuracy up to 88%). Furthermore, visualisation of the movement/time patterns is highly predictive of these behaviours. By using machine learning, this can be applied to behavioural analysis across experimental paradigms.
运动的量化和参数化在动物行为范式中被广泛应用。特别是在受控条件下的自由运动(例如,旷场实验范式)被用作“替代基线和药物诱导行为变化的指标。然而,这种分析通常既耗时又费力,而且现有的算法并不总是能正确分类行为。在这里,我们提出了一种在非约束环境下量化行为的新方法:在随时间变化的主体位置的时间序列中搜索频繁模式(k-基序)。该方法的验证是使用慢性喹吡罗诱导的啮齿动物旷场实验行为的变化来进行的。使用 k-基序作为特征来分析这些数据,以便更好地根据旷场中的行为将实验动物分为不同的实验组。我们的 k-基序分类器在将重复行为与对照组进行分类方面的准确率高达 94%,这与目前可用的方法(包括使用标准特征定义)相比有了实质性的提高(具体取决于特征集的选择和分类策略,准确率高达 88%)。此外,运动/时间模式的可视化对这些行为具有高度的预测性。通过使用机器学习,可以将其应用于跨实验范式的行为分析。